簡易檢索 / 詳目顯示

研究生: 胡哲瑋
CHE-WEI HU
論文名稱: 探討科學知識觀、工程設計能力與關鍵學習能力自我感知之關聯:以國小機器人課程為例
Exploring the relationships between scientific epistemic beliefs, engineering design practices, and perceptions of critical skills in elementary robotics program.
指導教授: 王嘉瑜
Chia-Yu Wang
口試委員: 方素琦
Su-Chi Fang
洪銘國
Ming-Kuo Hung
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 90
中文關鍵詞: 問題導向科學知識信念關鍵學習能力工程設計
外文關鍵詞: Problem-based, Critical learning skill, Engineering design
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的是探討國小學生接受問題導向STEM機器人專題課程,對提升關鍵學習能力之影響,並進一步探討學習者持有的科學知識信念,與學習者於問題導向STEM機器人專題課程前、後之關鍵學習能力自我感知及工程設計表現有何關聯。本研究採單一組前、後測設計,以國小中、高年級學生為實驗對象,實施問題導向機器人專題課程。於課程前進行科學知識信念量表,並於課前與課後實施關鍵學習能力量表。為探討接受範例及問題導向引導機器人專題課程,是否提升關鍵學習能力之表現,採相依樣本t檢定分析前、後測關鍵學習能力問卷。為探討科學認識論與關鍵學習能力及工程設計表現之關聯,研究者以科學知識信念量表、關鍵學習能力表現前測、關鍵學習能力表現後測以及專題實作工程設計能力學習單之分數進行相關性分析,以了解其間的相關性。研究發現,經過機器人課程後,雖學生整體關鍵學習能力之自我感知未有顯著提升,但問題解決能力因素有些微上升,顯示學習單的題目設計對學生在其問題解決能力的提升有所感知;另外,在科學知識信念與關鍵學習能力及工程設計表現的關聯性方面,來源面向與創造性思考及創造知識效能感兩因素之後測結果有顯著關聯性,且科學知識信念的確定性及驗證面向與工程設計的產生想法階段表現呈現中度顯著正相關,表示接受機器人課程後,學生所持有的科學知識信念來源面向成熟與否會影響其在創造性思考及創造知識方面的發展,其針對知識確定性方面的概念及其反思性思考能力則會對工程設計流程中,產生想法與計畫階段的表現產生影響。


The purpose of this study was to investigate the impact of the problem-based STEM robotics curriculum on the perceptions of critical learning skills of elementary school students, and to investigate the relationship between learners' beliefs about scientific knowledge and their perceptions of critical learning skills and engineering design performance before and after the problem-based STEM robotics curriculum. A single-group pre- and post-test design was used to implement the problem-based robotics curriculum with third to sixth grader elementary school students. The Science Epistemic Beliefs Scale was administered before the course and the Critical Learning Skills Scale was administered before and after the course. To investigate whether the performance of critical learning skills was enhanced by receiving the sample and problem-based robotics curriculum, the pre and post-test critical learning skills questionnaires were validated and analyzed. To investigate the correlation between science epistemic beliefs, students’ perceptions of critical learning skills and engineering design performance, correlation analysis was conducted using the Science Epistemic Beliefs Scale, pre- and post-test of critical learning skill, and learning sheets of problem-based engineering design competencies to understand the correlation. It was found that after the robotics course, although the students' overall perceptions of critical learning skills did not improve significantly, the problem-solving skill factor increased slightly, which indicated that the design of the learning sheets contributed to students' perception of problem-solving skill. In addition, regarding the correlation between scientific epistemic beliefs, critical learning skill and engineering design performance, there was a significant correlation between the source-oriented with creative thinking and knowledge creation efficacy factors in the post-test. In addition, there was a significant correlation between scientific epistemic beliefs with creative thinking and knowledge creation efficacy in the post-test results. Their conceptualization of knowledge certainty and their ability to reflect on it will have an impact on their performance in the idea generation and planning stages of the engineering design process.

摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 vii 第一章 緒論 1 第一節、研究背景與動機 1 第二節、研究問題 3 第三節、名詞解釋 3 第二章 文獻探討 6 第一節、STEM 教育與工程設計 6 一、STEM教育及運算思維(Computational Thinking) 7 二、STEM教育及工程設計(Engineering Design) 8 第二節、機器人課程 11 一、機器人課程的發展與種類 11 二、有效的機器人課程與教學設計 11 三、問題導向機器人課程 13 第三節、關鍵學習能力 17 一、二十一世紀關鍵學習能力 17 二、關鍵學習能力與工程設計 19 第四節、科學知識信念 20 一、科學知識信念的發展與分類 20 二、科學知識信念與關鍵學習能力 23 三、科學知識信念與工程設計及科學學習概念 24 第三章 研究方法 27 第一節、研究對象 27 第二節、研究架構與設計 27 第三節、教學設計與流程 29 一、教學工具 29 二、教學設計與流程 32 第四節、研究工具 38 一、科學知識信念問卷 38 二、機器人關鍵學習能力自我感知量表 40 三、機器人專題實作工程設計能力學習單 41 第五節、資料蒐集與分析 46 第四章 研究結果與討論 48 第一節、範例引導及問題導向課程設計對關鍵學習能力自我感知提升之影響 48 第二節、科學知識信念與關鍵學習能力之關聯 50 第三節、科學知識信念與工程設計表現之關聯 53 第五章 結論與建議 56 第一節、結論 56 一、範例引導及問題導向課程設計對學生於關鍵學習能力之自我感知提升之影響 56 二、科學知識信念、關鍵學習能力與工程設計表現之關聯 57 第二節、建議 58 一、對相關機器人教學活動之建議 58 二、對日後研究之建議 59 參考文獻 61 中文部分 61 英文部分 62 附錄一 科學知識信念問卷 70 附錄二 機器人關鍵學習能力量表 71 附錄三 機器人專題實作工程設計能力學習單(設計前) 73 附錄四 機器人專題實作工程設計能力學習單(設計中) 74 附錄五 機器人專題實作工程設計能力學習單(設計後) 76 附錄六 機器人專題實作工程設計能力學習單評分範例 78

中文部分
王裕德, 陳元泰, & 曾鈴惠. (2012). 機器人問題導向程式設計課程對女高中學生學習程式設計影響之研究. 科學教育月刊, (354), 11-29.
李隆盛, & 楊秀全. (2019). 範例引導學習與問題導向學習之教學策略對國小學生機器人程式學習的影響. 數位學習科技期刊, 11(4), 77-104.
姚經政, & 林呈彥. (2016)。STEM 教育應用於機器人教學-以 6E 教學模式結合差異化教學. 科技與人力教育季刊, 3(1), 53-75.
范信賢. (2016)。核心素養與十二年國民基本教育課程綱要:導讀《國民核心素養:十二年國教課程改革的DNA》。國家教育研究院教育脈動電子期刊,5,1-7。
陳萩卿, & 張景媛. (2007)。知識信念影響學習運作模式之驗證. 教育心理學報, 39(1), 23-43.
教育部. (2014)。十二年國民基本教育課程綱要總綱。
許崇憲. (2022)。工作記憶與知識論信念對批判思考技巧表現的預測力. 教育心理學報, 53(4), 979-1002.
蔡清田.(2015)。課程發展與設計的關鍵 DNA: 核心素養. 台灣五南圖書出版股份有限公司.
劉佩雲, & 陳柏霖. (2015)。網路學習之知識信念與學習成效的關係: 以後設認知為中介效果之分析. 教育研究與發展期刊, 11(4), 23-48. 
英文部分
Barak, M., & Zadok, Y. (2009). Robotics projects and learning concepts in science, technology and problem solving. International Journal of Technology and Design Education, 19, 289-307.
Barrows, H. S. (2000). Problem-based learning applied to medical education. Springfield: SouthernIllinois University Press.
Bers, M. U. (2010). The TangibleK robotics program: Applied computational thinking for young children. Early Childhood Research & Practice, 12(2), n2.
Bethke Wendell, K., & Rogers, C. (2013). Engineering design‐based science, science content performance, and science attitudes in elementary school. Journal of Engineering Education, 102(4), 513-540.
Brown, T. (2008). Design thinking. Harvard business review, 86(6), 84.
Browne, M. N., & Keeley, S. M. (2007). Asking the right questions: A guide to critical thinking. Pearson Education.
Burke, B. N. (2014). The ITEEA 6E Learning ByDesignTM Model: Maximizing Informed Design and Inquiry in the Integrative STEM Classroom. Technology and Engineering Teacher, 73(6), 14-19.
Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, Co: BSCS, 5, 88-98.
Caliskan, E. (2020). The effects of robotics programming on secondary school students’ problem-solving skills. World Journal on Educational Technology: Current Issues, 12(4), 217-230.
Caratozzolo, P., Alvarez-Delgado, A., & Hosseini, S. (2019). Strengthening critical thinking in engineering students. International Journal on Interactive Design and Manufacturing (IJIDeM), 13, 995-1012.
Chai, C.-S., Deng, F., Tsai, P.-S., Koh, J. H. L., & Tsai, C.-C. (2015). Assessing multidimensional students’ perceptions of twenty-first-century learning practices. Asia Pacific Education Review, 16(3), 389-398. doi: 10.1007/s12564-015-9379-4
Chang, C. W., Lee, J. H., Chao, P. Y., Wang, C. Y., & Chen, G. D. (2010). Exploring the possibility of using humanoid robots as instructional tools for teaching a second language in primary school. Journal of Educational Technology & Society, 13(2), 13-24.
Conley, A. M., Pintrich, P. R., Vekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary educational psychology, 29(2), 186-204.
Danahy, E., Wang, E., Brockman, J., Carberry, A., Shapiro, B., & Rogers, C. B. (2014). Lego-based robotics in higher education: 15 years of student creativity. International Journal of Advanced Robotic Systems, 11(2), 27.
Deek, F., Kimmel, H., & McHugh, J. A. (1998). Pedagogical changes in the delivery of the first‐course in computer science: Problem solving, then programming. Journal of Engineering Education, 87(3), 313-320.
Elder, A. D. (2002). Characterizing fifth grade students' epistemological beliefs in science. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 347–363). Lawrence Erlbaum Associates Publishers.
English, L. D., & King, D.. (2019). STEM Integration in Sixth Grade: Desligning and Constructing Paper Bridges. International Journal of Science and Mathematics Education, 17(5), 863–884. https://doi.org/10.1007/s10763-018-9912-0
Fan, S.-C., & Yu, K.-C.. (2017). How an integrative STEM curriculum can benefit students in engineering design practices. International Journal of Technology and Design Education, 27(1), 107–129. https://doi.org/10.1007/s10798-015-9328-x
Ferrier, J. F., & Edmonds & Remnants,. (1854). Institutes of metaphysic: The theory of knowing and being. (PsycBOOKS (EBSCO).) Edinburgh: W. Blackwood.
Granovskiy, B. (2018). Science, technology, engineering, and mathematics (STEM) education: an overview. CRS Report R45223, Version 4. Updated. Congressional Research Service.
Hmelo-Silver, C. E., & Barrows, H. S.. (2008). Facilitating Collaborative Knowledge Building. Cognition and Instruction, 26(1), 48–94. https://doi.org/10.1080/07370000701798495
Hofer, B. K. (2000). Dimensionality and disciplinary differences in personal epistemology. Contemporary Educational Psychology, 25(4), 378-405.
Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88-140.
Honey, M., Pearson, G., & Schweingruber, A. (2014).STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington: National Academies Press.
Hong, J.-C., Yu, K.-C., & Chen, M.-Y.. (2011). Collaborative learning in technological project design. International Journal of Technology and Design Education, 21(3), 335–347. https://doi.org/10.1007/s10798-010-9123-7
Huang, N. T., Chang, Y. S., & Chou, C. H. (2020). Effects of creative thinking, psychomotor skills, and creative self-efficacy on engineering design creativity. Thinking skills and creativity, 37, 100695.
Hussain, S., Lindh, J., & Shukur, G. (2006). The effect of LEGO Training on pupils’ school performance in Mathematics, Problem Solving Ability and Attitude: Swedish Data Educational Technology & Society, 9 (3), 182-194.
Kaloti-Hallak, F., Armoni, M., & Ben-Ari, M.. (2019). The Effect of Robotics Activities on Learning the Engineering Design Process. Informatics in Education, 18(1), 105–129. https://doi.org/10.15388/infedu.2019.05
Kapucu, S. (2021). The relationships among high school students’ scientific epistemic beliefs, conceptions of learning physics and willingness to perform scientific studies in physics. Jurnal Pendidikan Fisika Indonesia, 17(2), 141-150.
Kaya, G. I. (2017). The Relations between scientific epistemological beliefs and goal orientations of pre-service teachers. Journal of Education and Training Studies, 5(10), 33-42.
Kelly, G. J., & Cunningham, C. M. (2019). Epistemic tools in engineering design for K‐12 education. Science Education, 103(4), 1080-1111.
Kim, N. J., Belland, B. R., & Axelrod, D. (2018). Scaffolding for optimal challenge in K–12 problem-based learning. The Interdisciplinary Journal of Problem-based Learning.
King, P. M., & Kitchener, K. S. (1994). Developing Reflective Judgment: Understanding and Promoting Intellectual Growth and Critical Thinking in Adolescents and Adults. Jossey-Bass Higher and Adult Education Series and Jossey-Bass Social and Behavioral Science Series. Jossey-Bass, 350 Sansome Street, San Francisco, CA 94104-1310.
King, P. M., & Kitchener, K. S.. (2004). Reflective Judgment: Theory and Research on the Development of Epistemic Assumptions Through Adulthood. Educational Psychologist, 39(1), 5–18. https://doi.org/10.1207/s15326985ep3901_2
Lee, W. W., & Chan, C. K. (2015). Identifying and examining epistemic beliefs among college students in Hong Kong. The Asia-Pacific Education Researcher, 24(4), 603-612.
Lin, C. H., Liu, E. Z. F., Kou, C. H., Virnes, M., Sutinen, E., & Cheng, S. S. (2009, August). A case analysis of creative spiral instruction model and students’ creative problem solving performance in a Lego® robotics course. In International Conference on Technologies for E-Learning and Digital Entertainment (pp. 501-505). Springer, Berlin, Heidelberg.
Lindberg, T., Meinel, C., & Wagner, R.. (2011). Design Thinking: A Fruitful Concept for IT Development? (pp. 3–18). https://doi.org/10.1007/978-3-642-13757-0_1
Mokyr, J., Vickers, C., & Ziebarth, N. L. (2015). The history of technological anxiety and the future of economic growth: Is this time different?. Journal of Economic Perspectives, 29(3), 31-50.
Noble, C. Everett and Cratty, . Bryant J. (2022, September 8). Psychomotor learning. Encyclopedia Britannica. https://www.britannica.com/science/psychomotor-learning
Osgood, L. (Elizabeth) ., & Johnston, C. R.. (2022). Design and engineering: A classification and commentary. Education Sciences, 12(4), 232. https://doi.org/10.3390/educsci12040232
Partnership for 21st Century Skills. (2019). Framework for 21st century learning. Retrieved from http://www.battelleforkids.org/learning-hub/learning-hub-item/framework-for-21st-centurylearning
Perry W. G. & Harvard University. (1970). Forms of intellectual and ethical development in the college years; a scheme. Holt Rinehart and Winston.
Putra, P. D. A., Sulaeman, N. F., Supeno, & Wahyuni, S.. (2023). Exploring students' critical thinking skills using the engineering design process in a physics classroom. The Asia-pacific Education Researcher, 32(1), 141–149. https://doi.org/10.1007/s40299-021-00640-3
Schommer, M. (1988). Dimensions of tacit epistemology and comprehension. In annual conference of the American Educational Research Association, New Orleans.
Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprehension. Journal of educational psychology, 82(3), 498.
Schraw, G., Bendixen, L. D., & Dunkle, M. E. (2002). Development and validation of the Epistemic Belief Inventory (EBI).
She, H., Lin, H., & Huang, L.. (2019). Reflections on and implications of the programmer for International Student Assessment 2015 (PISA 2015) performance of students in Taiwan: The role of epistemic beliefs about science in scientific literacy. Journal of Research in Science Teaching, 56(10), 1309–1340. https://doi.org/10.1002/tea.21553
Skogstad, P., & Leifer, L. (2011). A unified innovation process model for engineering designers and managers. Design Thinking: Understand–Improve–Apply, 19-43.
Slangen, L., Van Keulen, H., & Gravemeijer, K.. (2011). What pupils can learn from working with robotic direct manipulation environments. International Journal of Technology and Design Education, 21(4), 449–469. https://doi.org/10.1007/s10798-010-9130-8
Song, J. B., Shin, S. B., & Lee, T. W. (2010). A Study on effectiveness of STEM integration education using educational robot. Journal of The Korea Society of Computer and Information, 15(6), 81-89.
Stroupe, D., Moon, J., & Michaels, S. (2019). Introduction to special issue: Epistemic tools in science education. Science Education, 103(4), 948-951.
Sugimoto, M. (2011). A mobile mixed-reality environment for children's storytelling using a handheld projector and a robot. IEEE Transactions on Learning Technologies, 4(3), 249-260.
Sulaeman, N. F., Putra, P. D. A., Mineta, I., Hakamada, H., Takahashi, M., Ide, Y., & Kumano, Y.. (2021). Exploring student engagement in STEM education through the engineering design process. Jurnal Penelitian Dan Pembelajaran IPA, 7(1), 1. https://doi.org/10.30870/jppi.v7i1.10455
Toh, L. P. E., Causo, A., Tzuo, P. W., Chen, I. M., & Yeo, S. H. (2016). A review on the use of robots in education and young children. Journal of Educational Technology & Society, 19(2), 148-163.
Tsai, C. C., Ho, H. N. J., Liang, J. C., & Lin, H. M. (2011). Scientific epistemic beliefs, conceptions of learning science and self-efficacy of learning science among high school students. Learning and Instruction, 21(6), 757-769.
U.S. Department of Commerce (2017). STEM Jobs: 2017 Update. Retrieved October 13, 2022, from https://www.commerce.gov/data-and-reports/reports/2017/03/stem-jobs-2017-update
Varela-Aldás, J., Buele, J., Jadan-Guerrero, J., & Andaluz, V. H. (2020, July). Teaching STEM competencies through an educational mobile robot. In International Conference on Human-Computer Interaction (pp. 560-573). Cham: Springer International Publishing.
Varney, M. W., Janoudi, A., Aslam, D. M., & Graham, D.. (2012). Building young engineers: TASEM for third graders in woodcreek magnet elementary school. IEEE Transactions on Education, 55(1), 78–82. https://doi.org/10.1109/te.2011.2131143
Wan, Z. H., So, W. M. W., & Hu, W. (2021). Necessary or sufficient? The impacts of epistemic beliefs on STEM creativity and the mediation of intellectual risk-taking. International Journal of Science Education, 43(5), 672-692.
Yang, F. Y., Liu, S. Y., Hsu, C. Y., Chiou, G. L., Wu, H. K., Wu, Y. T., ... & Tsai, C. C. (2018). High-school students’ epistemic knowledge of science and its relation to learner factors in science learning. Research in Science Education, 48(2), 325-344.
Zhong, B., & Xia, L.. (2020). A systematic review on exploring the potential of educational robotics in mathematics education. International Journal of Science and Mathematics Education, 18(1), 79–101. https://doi.org/10.1007/s10763-018-09939-y 

無法下載圖示 全文公開日期 2033/08/21 (校內網路)
全文公開日期 2033/08/21 (校外網路)
全文公開日期 2033/08/21 (國家圖書館:臺灣博碩士論文系統)
QR CODE