簡易檢索 / 詳目顯示

研究生: 林彥廷
Yan-Ting Lin
論文名稱: B12/CNT觸媒與單室微生物燃料電池空氣陰極的製作及其特性分析
Fabrication and Characteristic Analysis of B12 / CNT Catalyst and Air Cathode of Single Room Microbial Fuel Cell
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 王金燦
JIN-CAN WANG
丘群
Chun Chiu
江偉宏
Wei-Hung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 115
中文關鍵詞: 單室微生物燃料電池3D列印微型微生物燃料電池孔洞設計碳布改質
外文關鍵詞: single chamber microbial fuel cel, 3D printing, microbial fuel cell, hole design, carbon cloth modified
相關次數: 點閱:497下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

微生物燃料電池可分為單室和雙室,單室微生物燃料電池省去了陰極室,有著低內組等優點,因為利用氧氣作為陰極的氧化劑,所以讓電池沒有氧化劑消耗的問題。
3D 列印是以積層製造 (Additive Manufacturing) 為主的一種技術,透過 3D 列印可將微生物燃料電池的結構進一步縮小,此製程更加能夠節省製造時間及成本,對於實驗會快速且方便許多。
微型燃料電池因為電極表面積非常小導致電力輸出不佳,在電極表面積接觸面積非常小之狀況下,電極材料的高導電率、高表面積、
無腐蝕性等等性質就顯得相當重要,微型微生物燃料電池因為在陽極室會產生二氧化碳氣泡降低有效電極面積,本實驗在電池上增加孔洞設計來排出電池內的氣泡,增加其電池的放電能力。本研究利用碳布作為空氣陰極,一開始探討不同碳材塗佈於碳布上對於電池發電的影響,塗佈奈米碳管得到了最好的結果,在碳布上塗佈奈米碳管得到了最大的電流密度值3.889A/m2及最大功率密度值0.385W/m2,在觸媒比較實驗B12/CNT得到了最好的結果,提升了開路電位值 0.667V,提升了最大功率密度0.57W/m2。


There are two types of microbial fuel cells: single chamber and double chamber. Single chamber microbial fuel cell does not have cathode chamber. In this research, the proton exchange membrane was also removed, so it has low resistance characteristics. Because oxygen was served as the oxidant of cathode, battery does not have the problem of oxidant consumption.
Combining 3D printing with research is very popular nowadays. This technology is mainly based on additive manufacturing. Through 3D printing, the structure of microbial fuel cells can be further reduced, saving both time and money.
Consider the surface area of the electrodes of micro fuel cells is very small, the output power is quite low as well. When contact area of the electrodes is very small, electrode materials’ high electric conductivity, large surface area, and incorrosiveness are relatively important. Anode chamber of micro-bio-fuel cell will produce bubbles of carbon dioxide, which would reduce the effective electrode area. In this research, a hole within the battery structure was design to exhale bubbles inside the battery to increase the discharge capacity of battery. In this experiment, carbon cloth is used as an air cathode for comparison of different carbon materials. Finally, carbon cloth coated with carbon nanotubes (CNT) had obtained the best result. The maximum current densities were 3.889 A/m2 and 0.385 A/m2, which were 211% and 243% higher than those with the carbon cloth electrodes without modification.
In the catalyst comparison, B12/ CNT had the best result. Their open circuit potential (OCV) were 0.667V and the maximum power density were 0.57 W/m2, which were 99% and 204% higher than that of carbon cloth electrodes without catalyst.

摘要 I ABSTRACT II 目錄 III 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3文獻回顧 3 1.3.1氧還原反應之觸媒 3 1.3.2單室微生物燃料電池之氧氣擴散層 6 1.3.3微生物燃料電池強化與應用 10 1.4 文獻整理心得 20 1.5 實驗目的 22 第二章 微生物燃料電池組成與原理 23 2.1微生物燃料電池之組成 23 2.2 微生物燃料電池工作原理 25 2.3微生物燃料電池之性能 26 2.3.1理論電位 (THEORETICAL ELECTRIC POTENTIAL) 26 2.3.2極化曲線與功率曲線 29 2.4 BATCH TYPE和CONTINUOUS TYPE 比較 30 CONTINUOUS TYPE是利用循環系統將陽極液灌入MFC,可以利用此系統將基底與菌液不斷地在循環系統做更換,所以MFC可以因為此系統不斷地進行陽極內容物的更換,並且排除內部廢氣,因而得到更好的放電能力。BATCH TYPE是利用一次性的陽極菌液進行放電,所以需設計排除廢氣的裝置來增加其電池的壽命,本研究使用BATCH TYPE 的MFC來對排氣設計進行研究與探討,雖然BATCH TYPE放電能力並沒有CONTINUOUS TYPE來的優秀,但BATCH TYPE的MFC 並沒有循環的流體系統,使用性將就為便易。 30 2.5積層製造加工原理 30 第三章 實驗材料方法 32 3.1實驗流程 32 3.2 實驗藥品、材料 34 3.3實驗儀器 39 3.4微生物燃料電池製造流程 41 3.5微生物燃料電池架構 44 3.5.1無孔洞設計: 44 3.5.2孔洞設計: 44 3.6 B12之觸媒製作 45 3.7空氣陰極之製作 49 3.7.1 CARBON BASE LAYER (CBL) 49 3.7.3 GAS DIFFUSION LAYER (GDL) 51 3.7.2 CATALYST LAYER (CL) 53 3.8 菌種的選擇與陽極液調配 54 第四章 結果與討論 56 4.1不同碳材料添加至空氣陰極之開路電位比較 56 4.2不同碳材料添加至空氣陰極之極化曲線和功率密度之測試 65 4.2.1塗佈碳黑 (XC-72) 空氣陰極MFC的測試 67 4.2.2 塗佈活性碳 (AC) 空氣陰極MFC的測試 68 4.2.3塗佈奈米碳管 (CNT) 空氣陰極MFC的測試 70 4.2.4 塗佈石墨 (GRAPHITE) 空氣陰極MFC的測試 71 4.2.5不同碳材料添加至空氣陰極之極化曲線和功率密度之比較 73 4.3內阻值 79 4.3.1 無塗佈碳材之碳布 (CC) 的空氣陰極MFC的測試 81 4.3.3塗佈活性碳 (AC) 空氣陰極MFC的測試 82 4.3.4塗佈奈米碳管 (CNT) 空氣陰極 MFC的測試 82 4.3.5塗佈石墨 (GRAPHITE) 空氣陰極MFC的測試 83 4.3.6內阻比較 83 4.4不同觸媒之極化曲線及功率曲線之測試 85 4.4.1 B12/XC-72觸媒的測試 85 4.4.2 B12/CNT觸媒的測試 86 4.4.3 B12/AC觸媒的測試 88 4.4.4 無觸媒的測試 89 4.4.5不同種觸媒之極化曲線及功率曲線比較 91 第五章 結論 96 第六章 未來展望 98 參考文獻 99

[1] C. Wang, C. Wang,H. Huang, S. Changa, and F, Liaob, ” High stability pyrolyzed vitamin B12 as a non-preciousmetal catalystofoxygen reduction reaction in microbialfuel cells”,RSC Advances,Vol.3, pp. 15375-15381 (2013).
[2] J. Huang, N. Zhu, T. Yang, T. Zhang, P. Wu, Z. Dang, ” Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells”, Biosensors and Bioelectronics,Vol.72, pp. 332-339(2015).
[3] J. Huang, N. Zhu, T. Yang, T. Zhang, P. Wu, Z. Dang, ” Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells”, Environmental Science Water Research & Technology, Vol. 72, pp. 332-339 (2015).
[4] X. Zhang, W. He, W. Yang, J. Liu, Q. Wang, P. Liang, X. Huang and Bruce E. Logan,” Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells”, Environmental Science Water Research & Technology, Vol. 2, pp. 266-273 (2016).
[5 ]J. Huang, N. Zhu, T. Yang, T. Zhang, P. Wu, Z. Dang, ” Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells”, Vol. 72, pp. 332-339 (2015).
[6] C.Chen and Y. Su, ” An autonomous CO2 discharge and electrolyte agitation scheme for portable microbial fuel cells”, Department of Engineering and System Science,Vol.17, pp. 263-273(2007).
[7] H. Ren, S. Pyo, J. Lee, T. Park, F. Gittleson,F. Leung, J. Kim, A. Taylor, H. Lee,J. Chae” A high power density miniaturized microbial fuel cell having carbon nanotube anodes” ,Journal of Power Sources,Vol.273, pp. 823-830(2015).
[8] S. Choi, J. Chae, ” Optimal biofilm formation and power generation
in a micro-sized microbial fuel cell (MFC)”, Sensors and Actuators,Vol. 195, pp. 206-212(2013).
[9] H. Tsai, C. Wu, C. Lee, and E. Shih, ” Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes”, Journal of Power Sources, Vol. 194, pp. 199-205 (2009).
[10] C. Erbay, X. Pu, W. Choi, Mi-Jin Choi, Y. Ryu, H. Hou, F. Lin, P. Figueiredo, C. Yu, A. Han, ” Control of geometrical properties of carbon nanotube electrodes towards high-performance microbial fuel cells”,Journal of Power Sources, Vol. 280, pp. 347-354(2015).
[11] F. Qian, Z. He, M. Thelen,and Y. Li, ” A microfluidic microbial fuelcell fabricated by soft lithography”, Bioresource Technology, Vol. 102, pp. 5836-5840(2011).
[12] Y. Zhang, J. Sun, Y. Hu, S. Li, and Q. Xu, ”Carbon nanotube-coated stainless steel mesh for enhanced oxygen reduction in biocathode microbial fuel cells”, Journal of Power Sources, Vol.239, pp. 169-174 (2013).
[13] W.Yanga,X.Weia, A. Fraiwana, Christopher G. Cooganb, H.Leea,S.Choia,” Fast and sensitive water quality assessment: A-L-scale microbial fuelcell-based biosensor integrated with an air-bubble trap and electrochemical sensing functionality”, Sensors and Actuators B: Chemical, Vol.226, pp. 191-195 (2016).
[14] N. Lewis,D. Nocera, ” Powering the planet : chemical challenges in solar energy utilization”, Proceedings of the National Academy of Sciences, Vol. 103, pp. 15729-15735(2006).
[15] R. Lee, H. Crist, A. Riley, and K. MacLeod, ” Concentration and size of trace metal emission from a power plant, a steel plant, and cottongin”, Environmental Science and Technology,Vol. 9, pp. 623-647(1975).
[16] M. Dreicer, V.Tort, and H.Margerie, ” The external costs of thenuclear fuel cycle : Implementation in france”, Prepared forDirectorate General XII of the Commission of the EuropeanCommunities in the framework of the Extern E project (1995).
[17] “ 2012 Fuel Cell Technologies Market Report”, Fuel Cell Technologies Office, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (2013).
[18] 吳孟兒,「淺談二階段調整乾電池回收清除處理費率」,政院環境保護署(2008).
[19] 胡子揚,「小型微生物燃料電池,碩士論文,國立宜蘭大學,宜蘭 (2011).
[20] A. Shallan, P. Smejkal, M. Corban, R. Guijt, and M. Breadmore, ” Cost-effective three-dimensional printing of visibly transparent microchips within minutes”, Analytical Chemistry, Vol. 86, pp3124–3130 (2014).
[21] 布魯斯.洛根 (Bruce E. Logan) 著,馮玉杰,王鑫等譯,“ 微生燃料電池 MICROBIAL FUEL CELLS”, 化學工業出版社, 2009年10月. [22] C. Siu, M. Chiao, ” A micro fabricated PDMS microbial fuel cell”, Journal of Microelectromechanical Systems, Vol. 17, pp. 1329-1341(2009).
[23] M. Chiao, K. Lam, and L. Lin, ” Micromachined microbial and photosynthetic fuel cells”, Journal of Micromechanics and Microengineering, Vol. 16, pp. 2547-2553(2006).
[24] S. Choi, J. Chae, ” An array of microliter-sized microbial fuel cells generating 100 μW of power”, Sensors and Actuators A, Vol. 177,pp. 10-15 (2012).
[25] F. Qian, Z. He, M. Thelen, and Y. Li, ” A microfluidic microbial fuel cell fabricated by soft lithography”, Bioresource Technology, Vol. 102, pp. 5836-5840 (2011).
[26] 許博凱,「微型微生物燃料電池」,碩士論文,國立臺灣科技大學,台北(2013).
[27] 吳振昌,「具奈米碳管之碳布電極應用於微生物燃料電池之產電效能」,碩士論文,國立海洋大學,基隆(2008).
[28] 劉永慧、魏拯華,「奈米科技與檢測技術」,工業技術研究院,(2003).
[29] L. Zhuang,Y. Yuan,G. Yang, and S. Zhou, ” In situ formation of graphene/biofilm composites for enhanced oxygen reduction inbiocathode microbial fuel cells”, Electrochemistry Communications,Vol. 21, pp. 69-72 (2012).
[30] J. Liu, Y. Qiao, C. Guo, S. Lim, H. Song, and C. Li, ” Graphene/carbon cloth anode for high-performance mediator less microbial fuel cells”, Bioresource Technology, Vol. 114, pp. 275-280(2012).
[31] C. Joseph Kirubaharan, K. Santhakumar, G. Gnana kumar, N.Senthilkumar, Jae-Hyung Jang, ” Nitrogen doped graphene sheets asmetal free anode catalysts for the high performance microbial fuel cells”, Journal of Power Sources, Vol. 40, pp. 13061-13070 (2015).
[32] K. Rabaey, W. Verstraete, “ Microbial fuel cells: novelbiotechnology for energy generation”, Trends in Biotechnology, Vol.23, pp. 291-298 (2005).
[33] Z. Du, H. Li, and T. Gu, ” A state of the art review on microbial fuel cells: A promising technology for wastewater treatment andbioenergy”, Biotechnology Advances, Vol. 25, pp. 464-482 (2007).
[34] N. Trinh, J. Park, and B. Kim, ” Increased generation of electricity in a microbial fuel cell using Geobacter sulfurreducens”, KoreanJournal of Chemical Engineering, Vol. 26, pp. 748-753 (2009).
[35] M. Hofmann, D. Nezich, A. Reina, and J. Kong, ” In-situ samplerotation as a tool to understand chemical vapor deposition growth oflong aligned carbon nanotubes”, Nano Letters, Vol. 8, pp4122–4127.(2008).
[36] H. Philamore, J. Rossiter, P. Walters, J. Winfield, I.Ieropoulos, ” Cast and 3D printed ion exchange membranes formonolithic microbial fuel cell fabrication”, Journal of Power Sources,Vol. 289, pp. 91-99 (2015).
[37] A. Gunawardena, S. Fernando, F. To, ” Performance of a Yeast-mediated Biological Fuel Cell”, International Journal of Molecular Sciences, pp. 1893-1907 (2008).
[38] S. Choi, H.-S. Lee, Y. Yang, P. Parameswaran, C. I. Torres, B. E. Rittmann and J. Chae, “ A μL-scale micro machined microbial fuel cell having high power density”, Lab on a Chip, Vol. 11, pp.1110-1117 (2011).
[39] S. Cheng, H. Liu, B. E. Logan, ” Increased Power Generation in a Continuous Flow MFC with advective Flow through the Porous Anode and Reduced Electrode Spacing”, Environ. Sci. Technol., pp.2426–2432(2006).
[40] C. Wang, M. Waje, X. Wang, J. M Tang, R. C Haddon, Y. Yan, ” Proton exchange membrane fuel cells with carbon nanotube based electrodes”, Nano letters, pp. 345-348 (2004).
[41] M. A Correa-Duarte, N. Wagner, J. Rojas-Chapana, C. Morsczeck, M. Thie, M. Giersig, ” Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth”, Nano letters, pp. 2233-2236 (2004).
[42] Y. Zhang, G. Mo, X. Li, W. Zhang, J. Zhang, J. Ye, X. Huang, C. Yu, ” A graphene modified anode to improve the performance of microbial fuel cells”, Journal of Power Sources, Vol. 196, pp.5402-5407 (2011).
[43] L. Xiao, J. Damien, J. Luo, H. Dong Jang, J. Huang, Z. He, ” Crumpled graphene particles for microbial fuel cell electrodes”, Journal of Power Sources, Vol. 208, pp. 187-192 (2008).
[44] Y. He, Z. Liu, Xin-hui Xing, B. Li, Y. Zhang, R. Shen, Z. Zhu, N.Duan, ” Carbon nanotubes simultaneously as the anode and microbial carrier for up-flow fixed-bed microbial fuel cell”, Journal of Power Sources, Vol. 94, pp. 39-44 (2015).
[45] Y. Hubenova, M. Mitov, ” Extracellular electron transfer in yeast-based biofuel cells: A review”, Journal of Power Sources, Vol.106, pp. 177-185 (2015).
[46] H. Kaneshiro, K. Takano, Y. Takada, T. Wakisaka, T. Tachibana, M. Azuma, ” A milliliter-scale yeast-based fuel cell with high performance”, Journal of Power Sources, Vol. 83, pp. 90-96 (2014).
[47] H. Peter Bennetto, John L. Stirling, K. Tanaka, Carmen A. Vega, ” Anodic reactions in microbial fuel cells”, Biotechnology and Bioengineering, Vol. 25, pp. 559-568 (1983).
[48] S. Wilkinson, J. Klar, S. Applegarth, ”Optimizing Biofuel Cell Performance Using a Targeted Mixed Mediator Combination”, Electro analysis, Vol. 18, pp. 2001-2007 (2006).
[49] R. Ganguli, B. S. Dunn, ” Kinetics of Anode Reactions for a Yeast-Catalysed Microbial Fuel Cell”, Fuel Cells, Vol. 9, pp. 44-52(2009).
[50] S. Babanova, Y. Hubenova, M. Mitov, ” Influence of artificial mediators on yeast-based fuel cell performance”, Journal of Power Sources, Vol. 112, pp. 379-387 (2011).
[51] S. Cheng and W. Liu, ” How to Make Cathodes with a Diffusion Layer for Single Chamber Microbial Fuel Cells”, Electrochemistry Communications, Vol.8, pp.489-494 (2006).
[52] E. Taha , T. Tsujiguchi, N. Nakagawa, ” Catalytic activity of baker's yeast in a mediator less microbial fuel cell”, Electrochemistry Communications, Vol.86, pp.97-101 (2012).

QR CODE