簡易檢索 / 詳目顯示

研究生: Josewin Lawrensen
Josewin Lawrensen
論文名稱: 通過微透鏡陣列光流控芯片實現基於智能手機的實時液滴流式細胞測量系統
Real Time Smartphone based Droplet Flow Cytometry System via Micro Lens Array Optofluidic Chip
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 田維欣
Wei-Hsin Tien
劉沂欣
Yi-Hsin Liu
葉怡均
Yi-Chun Yeh
陳珮珊
Pai-Shan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 71
外文關鍵詞: Micro Lens Array (MLA), Optofluidic Chip
相關次數: 點閱:239下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


TABLE OF CONTENTS ABSTRACT .................................................................. I ACKNOWLEDGEMENTS ............................................. II TABLE OF CONTENTS ................................................... III LIST OF TABLES ............................................................. VII LIST OF FIGURES ......................................................... VIII CHAPTER 1. INTRODUCTION ......................................... 1 1.1. Motivation ................................................................... 1 1.2. Microfluidic Device...................................................... 1 1.2.1. Droplet generation ................................................... 2 1.2.2. Optofluidic chip ................................................... 3 1.2.3. Flow cytometry .......................................................... 5 1.3. Smartphone-based Point of Care devices .................................. 6 1.4. Micro Lens Array .......................................................... 7 1.5. Organization of this thesis ............................................... 9 CHAPTER 2. LITERATURE REVIEW ................................... 10 2.1. MLA optofluidic flow cytometry ...................................... 10 2.2. Smartphone-based Point of Care flow cytometry devices ...................... 13 2.2.1. Non-flowing based ...................................................... 13 2.2.2. Flowing based ................................................ 15 2.3. Problem statements and objectives of this thesis ................. 18 CHAPTER 3. METHODOLOGY ....................................... 20 3.1. Materials ............................................................... 20 3.2. Design and fabrication of microfluidic chips and MLA .............. 20 3.2.1. Droplet generator and detection chip ............................. 20 3.2.2. PDMS MLA ................................................... 23 3.2.3. MLA alignment on the detection chip ................................... 24 3.3. Design of smartphone-based droplet flow cytometry platform .................. 26 3.4. MLA illumination configuration .................................... 28 3.4.1. Macroscale illumination ............................................. 28 3.4.2. Microscale illumination ............................................... 29 3.5. In-built App .......................................................... 30 3.5.1. APP interface and controls .................................... 30 3.5.2. Internal codes.................................................. 32 3.6. Experiment procedures .............................................. 38 3.6.1. Droplet size and uniformity investigation ............................... 38 3.6.2. MLA properties verification ........................................ 39 3.6.3. Optimal lens rows distance determination ............................. 39 3.6.4. Alignment errors quantification ...................................... 40 3.6.5. LED irradiance variation measurement ............................ 41 3.6.6. Determination of cut-off value and resolvability in single channel ..... 42 3.6.7. Sensitivity and Signal-to-Noise ratio enhancement in all channels ..... 43 3.6.8. Counting results verification .......................................... 43 CHAPTER 4. RESULT AND DISCUSSION ................................. 45 4.1. Size and uniformity of generated droplets .......................... 45 4.2. Characterization of MLA ............................................... 46 4.2.1. Geometry and uniformity of MLA ....................... 46 4.2.2. Optimal lens rows distance .................................... 47 4.2.3. Alignment errors ...................................................... 48 4.3. Effect of LED irradiance variation ................................ 49 4.4. MLA detection improvements and APP verification .......................... 50 4.4.1. Determination of cut-off value and resolvability in single channel ..... 50 4.4.2. Sensitivity and Signal-to-Noise ratio enhancement in all channels ..... 52 4.4.3 Verification with object tracking based detection ................... 53 4.5. Comparisons with other related works .................................. 55 CHAPTER 5. CONCLUSION ....................................................... 56 5.1. Conclusions ........................................... 56 5.2. Limitations of this research ................................ 56 5.3. Future recommendations ................................... 57 REFERENCES ................................................ 59 APPENDIX .......................................................... 68

REFERENCES
[1] R. Bain et al., “Global assessment of exposure to faecal contamination through drinking water based on a systematic review,” Trop. Med. Int. Heal., vol. 19, no. 8, pp. 917–927, 2014, doi: 10.1111/tmi.12334.
[2] K. Licence, K. R. Oates, B. A. Synge, and T. M. S. Reid, “An outbreak of E. coli O157 infection with evidence of spread from animals to man through contamination of a private water supply,” Epidemiol. Infect., vol. 126, no. 1, pp. 135–138, 2001, doi: 10.1017/s0950268801004988.
[3] P. A. Chapman, C. A. Siddons, A. T. Cerdan Malo, and M. A. Harkin, “A 1-year study of Escherichia coli O157 in cattle, sheep, pigs and poultry,” Epidemiol. Infect., vol. 119, no. 2, pp. 245–250, 1997, doi: 10.1017/S0950268897007826.
[4] R. S. McKee, P. I. Tarr, D. J. Dietzen, R. Chawla, and D. Schnadower, “Clinical and Laboratory Predictors of Shiga Toxin-Producing Escherichia coli Infection in Children with Bloody Diarrhea,” J. Pediatric Infect. Dis. Soc., vol. 7, no. 3, pp. E116–E122, 2018, doi: 10.1093/jpids/piy025.
[5] B. P. Bell et al., “A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience.,” JAMA, vol. 272, no. 17, pp. 1349–1353, Nov. 1994.
[6] S. B. March and S. Ratnam, “Sorbitol-MacConkey medium for detection of Escherichia coli O157:H7 associated with hemorrhagic colitis,” J. Clin. Microbiol., vol. 23, no. 5, pp. 869–872, May 1986, doi: 10.1128/jcm.23.5.869-872.1986.
[7] L. T. Nguyen, B. E. Gillespie, H. M. Nam, S. E. Murinda, and S. P. Oliver, “Detection of Escherichia coli O157:H7 and Listeria monocytogenes in beef products by real-time polymerase chain reaction.,” Foodborne Pathog. Dis., vol. 1, no. 4, pp. 231–240, 2004, doi: 10.1089/fpd.2004.1.231.
[8] M. W. Ashraf, S. Tayyaba, and N. Afzulpurkar, “Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications,” Int. J. Mol. Sci., vol. 12, no. 6, pp. 3648–3704, 2011, doi: 10.3390/ijms12063648.
[9] L. Y. Yeo, H. C. Chang, P. P. Y. Chan, and J. R. Friend, “Microfluidic devices for bioapplications,” Small, vol. 7, no. 1. pp. 12–48, 2011, doi: 10.1002/smll.201000946.
[10] P. Abgrall and A. M. Gué, “Lab-on-chip technologies: Making a microfluidic network and coupling it into a complete microsystem - A review,” J. Micromechanics Microengineering, vol. 17, no. 5, 2007, doi: 10.1088/0960-1317/17/5/R01.
[11] M. A. Burns et al., “An Integrated Nanoliter DNA Analysis Device,” Science (80-. )., vol. 282, no. 5388, pp. 484–487, 1998, doi: 10.1126/science.282.5388.484.
[12] Y.-C. Tan, V. Cristini, and A. P. Lee, “Monodispersed microfluidic droplet generation by shear focusing microfluidic device,” Sensors Actuators B Chem., vol. 114, no. 1, pp. 350–356, 2006, doi: https://doi.org/10.1016/j.snb.2005.06.008.
[13] P. Zhu and L. Wang, “Passive and active droplet generation with microfluidics: a review,” Lab Chip, vol. 17, no. 1, pp. 34–75, 2017, doi: 10.1039/C6LC01018K.
[14] A. I. Segaliny et al., “Functional TCR T cell screening using single-cell droplet microfluidics,” Lab Chip, vol. 18, no. 24, pp. 3733–3749, 2018, doi: 10.1039/C8LC00818C.
[15] X. Bian et al., “A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes,” Biosens. Bioelectron., vol. 74, pp. 770–777, 2015, doi: https://doi.org/10.1016/j.bios.2015.07.016.
[16] D.-K. Kang, M. Monsur Ali, K. Zhang, E. J. Pone, and W. Zhao, “Droplet microfluidics for single-molecule and single-cell analysis in cancer research, diagnosis and therapy,” TrAC Trends Anal. Chem., vol. 58, pp. 145–153, 2014, doi: https://doi.org/10.1016/j.trac.2014.03.006.
[17] C.-X. Zhao, “Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery,” Adv. Drug Deliv. Rev., vol. 65, no. 11, pp. 1420–1446, 2013, doi: https://doi.org/10.1016/j.addr.2013.05.009.
[18] K. B. Mogensen and J. P. Kutter, “Optical detection in microfluidic systems,” Electrophoresis, vol. 30, no. S1, pp. S92–S100, Jun. 2009, doi: https://doi.org/10.1002/elps.200900101.
[19] S. Balslev et al., “Lab-on-a-chip with integrated optical transducers,” Lab Chip, vol. 6, no.2, pp. 213–217, 2006, doi: 10.1039/B512546D.
[20] M. L. Chabinyc et al., “An Integrated Fluorescence Detection System in Poly(dimethylsiloxane) for Microfluidic Applications,” Anal. Chem., vol. 73, no. 18, pp. 4491–4498, Sep. 2001, doi: 10.1021/ac010423z.
[21] J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sensors Actuators, B Chem., vol. 99, no. 2–3, pp. 615–622, 2004, doi: 10.1016/j.snb.2003.11.014.
[22] J. Krüger, K. Singh, A. O’Neill, C. Jackson, A. Morrison, and P. O’Brein, “Development of a microfluidic device for fluorescence activated cell sorting,” J. Micromechanics Microengineering, vol. 12, no. 4, pp. 486–494, 2002, doi: 10.1088/0960-1317/12/4/324.
[23] S. Yan and D. Yuan, “Continuous microfluidic 3D focusin[1] T. D. Chung and H. C. Kim, ‘Recent advances in miniaturized microfluidic flow cytometry for clinical use,’ Electrophoresis, vol. 28, no. 24, pp. 4511–4520, 2007, doi: https://doi.org/10.1002/elps.200700620.g enabling ,” Talanta, vol. 221, p. 121401, 2021, doi: https://doi.org/10.1016/j.talanta.2020.121401.
[24] M. Li, H. Liu, S. Zhuang, and K. Goda, “Droplet flow cytometry for single-cell analysis,” RSC Adv., vol. 11, no. 34, pp. 20944–20960, 2021, doi: 10.1039/D1RA02636D.
[25] Y.-J. Eun, A. S. Utada, M. F. Copeland, S. Takeuchi, and D. B. Weibel, “Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation.,” ACS Chem. Biol., vol. 6, no. 3, pp. 260–266, Mar. 2011, doi: 10.1021/cb100336p.
[26] V. Chokkalingam et al., “Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics,” Lab Chip, vol. 13, no. 24, pp. 4740–4744, 2013, doi: 10.1039/C3LC50945A.
[27] A. Alvarez-Barrientos, J. Arroyo, R. Cantón, C. Nombela, and M. Sánchez-Pérez, “Applications of flow cytometry to clinical microbiology.,” Clin. Microbiol. Rev., vol. 13, no. 2, pp. 167–195, Apr. 2000, doi: 10.1128/CMR.13.2.167.
[28] H. M. Davey and D. B. Kell, “Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses.,” Microbiol. Rev., vol. 60, no. 4, pp. 641–696, Dec. 1996, doi: 10.1128/mr.60.4.641-696.1996.
[29] A. Bollmann, M.-J. Bär-Gilissen, and H. J. Laanbroek, “Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria.,” Appl. Environ. Microbiol., vol. 68, no. 10, pp. 4751–4757, Oct. 2002, doi: 10.1128/AEM.68.10.4751-4757.2002.
[30] P. Research, “Point-of-Care Testing (POCT) Market Size, Report 2022 To 2030.” [Online]. Available: https://www.precedenceresearch.com/point-of-care-testing-market.
[31] J. Liu, Z. Geng, Z. Fan, J. Liu, and H. Chen, “Point-of-care testing based on smartphone: The current state-of-the-art (2017–2018),” Biosens. Bioelectron., vol. 132, pp. 17–37, 2019, doi: https://doi.org/10.1016/j.bios.2019.01.068.
[32] P. C. Chen, K. H. Chen, C. Y. Lin, and Y. C. Yeh, “Rapidly and simultaneously quantifying multiple biomarkers of L-tyrosine hydroxylase deficiency by using paper microfluidic devices and smartphone-based analysis system,” Sensors Actuators B Chem., vol. 349, no. May, p. 130722, 2021, doi: 10.1016/j.snb.2021.130722.
[33] S.-C. Liao et al., “Smart cup: A minimally-instrumented, smartphone-based point-of-care molecular diagnostic device,” Sensors Actuators B Chem., vol. 229, pp. 232–238, 2016, doi: https://doi.org/10.1016/j.snb.2016.01.073.
[34] T. Chen, W. R. Cox, D. Lenhard, and D. J. Hayes, “Microjet printing of high-precision microlens array for packaging of fiber optic components,” in Proc.SPIE, Jun. 2002, vol. 4652, pp. 136–141, doi: 10.1117/12.469561.
[35] G. E. Artzner, “Microlens arrays for Shack-Hartmann wavefront sensors,” Opt. Eng., vol. 31, no. 6, pp. 1311–1322, Jun. 1992, doi: 10.1117/12.56178.
[36] M. Zimmermann, N. Lindlein, R. Voelkel, and K. J. Weible, “Microlens laser beam homogenizer: from theory to application,” in Proc.SPIE, Sep. 2007, vol. 6663, p. 666302, doi: 10.1117/12.731391.
[37] G. Intermite et al., “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express, vol. 23, no. 26, pp. 33777–33791, 2015, doi: 10.1364/OE.23.033777.
[38] J.-H. Lee et al., “Efficiency improvement and image quality of organic light-emitting display by attaching cylindrical microlens arrays,” Opt. Express, vol. 16, no. 26, pp. 21184–21190, 2008, doi: 10.1364/OE.16.021184.
[39] C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromechanics Microengineering, vol. 13, no. 5, pp. 775–781, 2003, doi: 10.1088/0960-1317/13/5/333.
[40] N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng., vol. 60, no. 3, pp. 365–379, 2002, doi: https://doi.org/10.1016/S0167-9317(01)00695-5.
[41] B.-K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol., vol. 10, no. 6, pp. 531–535, 2004, doi: 10.1007/s00542-004-0387-2.
[42] S. Mihailov and S. Lazare, “Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon,” Appl. Opt., vol. 32, no. 31, pp. 6211–6218, Nov. 1993, doi: 10.1364/AO.32.006211.
[43] Y. Luo et al., “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci., vol. 279, pp. 36–40, 2013, doi: https://doi.org/10.1016/j.apsusc.2013.03.148.
[44] M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng., vol. 33, no. 11, pp. 3547–3551, 1994, doi: 10.1117/12.179880.
[45] X. Liu, X. Zhang, F. Fang, Z. Zeng, H. Gao, and X. Hu, “Influence of machining errors on form errors of microlens arrays in ultra-precision turning,” Int. J. Mach. Tools Manuf., vol. 96, pp. 80–93, 2015, doi: https://doi.org/10.1016/j.ijmachtools.2015.05.008.
[46] S. Moore, J. Gomez, D. Lek, B. H. You, N. Kim, and I.-H. Song, “Experimental study of polymer microlens fabrication using partial-filling hot embossing technique,” Microelectron. Eng., vol. 162, pp. 57–62, 2016, doi: https://doi.org/10.1016/j.mee.2016.05.009.
[47] S.-I. Bae, K. Kim, S. Yang, K. Jang, and K.-H. Jeong, “Multifocal microlens arrays using multilayer photolithography,” Opt. Express, vol. 28, no. 7, p. 9082, 2020, doi: 10.1364/oe.388921.
[48] H. H. Kim, B. H. O, S. G. Lee, and S. G. Park, “Fabrication of novel double microlens using two step soft lithography,” Microelectron. Eng., vol. 87, no. 5–8, pp. 1033–1036, 2010, doi: 10.1016/j.mee.2009.11.099.
[49] E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, “A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array,” Opt. Express, vol. 19, no. 2, p. 1385, 2011, doi: 10.1364/oe.19.001385.
[50] J. Lim, P. Gruner, M. Konrad, and J. C. Baret, “Micro-optical lens array for fluorescence detection in droplet-based microfluidics,” Lab Chip, vol. 13, no. 8, pp. 1472–1475, 2013, doi: 10.1039/c3lc41329b.
[51] J. Lim, J. Vrignon, P. Gruner, C. S. Karamitros, M. Konrad, and J. C. Baret, “Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array,” Appl. Phys. Lett., vol. 103, no. 20, 2013, doi: 10.1063/1.4830046.
[52] D. Wu, L.-G. Niu, S.-Z. Wu, J. Xu, K. Midorikawa, and K. Sugioka, “Ship-in-a-bottle femtosecond laser integration of optofluidic microlens arrays with center-pass units enabling coupling-free parallel cell counting with a 100% success rate,” Lab Chip, vol. 15, no. 6, pp. 1515–1523, 2015, doi: 10.1039/C4LC01439A.
[53] G. Holzner, Y. Du, X. Cao, J. Choo, A. J. deMello, and S. Stavrakis, “An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry,” Lab Chip, vol. 18, no. 23, pp. 3631–3637, 2018, doi: 10.1039/C8LC00593A.
[54] F. Hu et al., “Smartphone-Based Droplet Digital LAMP Device with Rapid Nucleic Acid Isolation for Highly Sensitive Point-of-Care Detection,” Anal. Chem., vol. 92, no. 2, pp. 2258–2265, Jan. 2020, doi: 10.1021/acs.analchem.9b04967.
[55] X. Cui et al., “Smartphone-based rapid quantification of viable bacteria by single-cell microdroplet turbidity imaging,” Analyst, vol. 143, no. 14, pp. 3309–3316, 2018, doi: 10.1039/C8AN00456K.
[56] Y. Zeng et al., “A low cost and portable smartphone microscopic device for cell counting,” Sensors Actuators, A Phys., vol. 274, pp. 57–63, 2018, doi: 10.1016/j.sna.2018.03.009.
[57] H. Zhu, S. Mavandadi, A. F. Coskun, O. Yaglidere, and A. Ozcan, “Optofluidic Fluorescent Imaging Cytometry on a Cell Phone,” Anal. Chem., vol. 83, no. 17, pp. 6641–6647, Sep.2011, doi: 10.1021/ac201587a.
[58] V. Yelleswarapu, J. R. Buser, M. Haber, J. Baron, E. Inapuri, and D. Issadore, “Mobile platform for rapid sub–picogram-per-milliliter, multiplexed, digital droplet detection of proteins,” Proc. Natl. Acad. Sci., vol. 116, no. 10, pp. 4489–4495, Mar. 2019, doi: 10.1073/pnas.1814110116.
[59] T. Salafi et al., “Portable Smartphone-Based Platform for Real-Time Particle Detection in Microfluidics,” Adv. Mater. Technol., vol. 4, no. 3, p. 1800359, Mar. 2019, doi: https://doi.org/10.1002/admt.201800359.
[60] Y. J. Fan, H. J. Sheen, and P. Y. Chiou, “High throughput and parallel flow cytometer with solid immersion microball lens array,” in 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, pp. 1041–1044, doi: 10.1109/MEMSYS.2012.6170249.
[61] J. N. Kuo, C. C. Hsieh, S. Y. Yang, and G. Bin Lee, “An SU-8 microlens array fabricated by soft replica molding for cell counting applications,” J. Micromechanics Microengineering, vol. 17, no. 4, pp. 693–699, 2007, doi: 10.1088/0960-1317/17/4/004.
[62] M. Amasia and M. Madou, “Large-volume centrifugal microfluidic device for blood plasma separation,” Bioanalysis, vol. 2, no. 10, pp. 1701–1710, Oct. 2010, doi: 10.4155/bio.10.140.
[63] K.-Y. Lien et al., “Rapid isolation and detection of cancer cells by utilizing integrated microfluidic systems,” Lab Chip, vol. 10, no. 21, pp. 2875–2886, 2010, doi: 10.1039/C005178K.
[64] A. Lashkaripour et al., “Machine learning enables design automation of microfluidic flow-focusing droplet generation,” Nat. Commun., vol. 12, no. 1, 2021, doi: 10.1038/s41467-020-20284-z.
[65] B. Venzac et al., “PDMS Curing Inhibition on 3D-Printed Molds: Why? Also, How to Avoid It?,” Anal. Chem., vol. 93, no. 19, pp. 7180–7187, May 2021, doi: 10.1021/acs.analchem.0c04944.
[66] T. N. A. Vo and P.-C. Chen, “Maximizing interfacial bonding strength between PDMS and PMMA substrates for manufacturing hybrid microfluidic devices withstanding extremely high flow rate and high operation pressure,” Sensors Actuators A Phys., vol. 334, p. 113330,2022, doi: https://doi.org/10.1016/j.sna.2021.113330.
[67] P.-C. Chen, C.-W. Pan, W.-C. Lee, and K.-M. Li, “An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate,” Int. J. Adv. Manuf. Technol., vol. 71, no. 9, pp. 1623–1630, 2014, doi: 10.1007/s00170-013-5555-z.
[68] C. Yuan et al., “Ultrafast Three-Dimensional Printing of Optically Smooth Microlens Arrays by Oscillation-Assisted Digital Light Processing,” ACS Appl. Mater. Interfaces, vol. 11, no. 43, pp. 40662–40668, 2019, doi: 10.1021/acsami.9b14692.
[69] P.-C. Chen, C.-S. Yeh, and C.-Y. Hsieh, “Defocus digital light processing stereolithography for rapid manufacture of microlens arrays,” Sensors Actuators A Phys., vol. 345, p. 113819, 2022, doi: https://doi.org/10.1016/j.sna.2022.113819.
[70] 億聯電子科技有限公司, “5mm 聚光15° LED-藍光460nm,” 2018. https://shopee.tw/EHE.
[71] aatbio, “Fluorescein, disodium salt *CAS 518-47-8*.” https://www.aatbio.com/products/fluorescein-disodium-salt-cas-518-47-8.
[72] E. Optics, “SCHOTT OG-530, 25.4mm Dia., 3mm Thick, Colored Glass Longpass Filter.” https://www.edmundoptics.com.tw/p/og-530-254mm-dia-longpass-filter/6546/.
[73] Q. Wei et al., “Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone,” ACS Nano, vol. 7, no. 10, pp. 9147–9155, Oct. 2013, doi: 10.1021/nn4037706.
[74] S. Oomes, “Access camera pixels with AVFoundation,” 2017. https://stijnoomes.com/access-camera-pixels-with-av-foundation/.
[75] PTCmatcad, “Example: Grayscale and Color in Images.” https://support.ptc.com/help/mathcad/r8.0/en/index.html#page/PTC_Mathcad_Help/example_grayscale_and_color_in_images.html.
[76] P. Marimuthu, “Live graph using CorePlot in iOS,” 2020. https://www.spritle.com/blogs/2020/05/06/live-graph-using-coreplot-in-ios/.
[77] R. Gaire, “Algorithmic Thinking, Peak Finding,” 2020. https://rabingaire.medium.com/algorithmic-thinking-peak-finding-ad6f7415d154.
[78] J. Echessa, “How to Use iOS Charts API to Create Beautiful Charts in Swift,” 2015. https://www.appcoda.com/ios-charts-api-tutorial/.
[79] S. Canu, “Object Tracking with Opencv and Python.” https://pysource.com/2021/01/28/object-tracking-with-opencv-and-python/.
[80] Y.-J. Fan, Y.-C. Hsiao, Y.-L. Weng, Y.-H. Chen, P.-Y. Chiou, and H.-J. Sheen, “Development of a parallel three-dimensional microfluidic device for high-throughput cytometry,” Sensors Actuators B Chem., vol. 320, p. 128255, 2020, doi: https://doi.org/10.1016/j.snb.2020.128255.
[81] H. Itagaki, “Chapter 3 - Fluorescence Spectroscopy,” in Experimental Methods in Polymer Science, T. Tanaka, Ed. Boston: Academic Press, 2000, pp. 155–260.
[82] C. Wu et al., “TriD-LAMP: A pump-free microfluidic chip for duplex droplet digital loop-mediated isothermal amplification analysis,” Anal. Chim. Acta, vol. 1233, p. 340513, 2022, doi: https://doi.org/10.1016/j.aca.2022.340513.
[83] J. Dai, H. S. Kim, A. R. Guzman, W.-B. Shim, and A. Han, “A large-scale on-chip droplet incubation chamber enables equal microbial culture time,” RSC Adv., vol. 6, no. 25, pp. 20516–20519, 2016, doi: 10.1039/C5RA26505C.
[84] J. Q. Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, “Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics,” Lab Chip, vol. 8, no. 8, pp. 1265–1272, 2008, doi: 10.1039/b804911d.
[85] E. Optics, “500nm 12.5mm Diameter, OD 4.0 Shortpass Filter.” https://www.edmundoptics.com.tw/p/500nm-125mm-diameter-od-4-shortpass-filter-/27762/.
[86] 億聯電子科技有限公司, “5mm 均光30° LED-400nm,” 2018. https://shopee.tw/EHE.

無法下載圖示 全文公開日期 2026/07/28 (校內網路)
全文公開日期 2026/07/28 (校外網路)
全文公開日期 2026/07/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE