簡易檢索 / 詳目顯示

研究生: 鄭新愛
Getrudis Cintya Bedu
論文名稱: 在3D立體實境階層選單之互動表現研究
A STUDY OF INTERACTION PERFORMANCE ON HIERARCHICAL MENU DESIGN IN 3D STEREOSCOPIC AND REAL ENVIRONMENTS
指導教授: 林久翔
Chiu-Hsiang Lin
口試委員: 江行全
Bernard C. Jiang
孫天龍
Tien-Lung Sun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 68
中文關鍵詞: 互動技術立體環境表現深度選單
外文關鍵詞: interaction technique, stereoscopic, performance, depth, menu
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

如今,3D應用程式的使用變得越來越普遍,許多人也更願意親近3D應用程式。然而,3D環境下的人機互動關係還存在一些問題。特別是在直接互動中,人們直接與3D物件互動通常感到困難。因此,本研究觀察在立體實境下,人與水平選單直接互動的表現。在這個研究中,共測量五項變數:移動時間、表現、準確性、修正時間和尖峰速度。在本研究實驗共考量兩種環境因素、三種深度和三種難度指標。本實驗共招募12名眼睛狀態正常的自願參加者。結果顯示,在現實中直接互動的表現比立體環境好。在立體環境中,參與者的執行時間更長,速度更慢;深度變化不會顯著影響其他變數,除外準確性。它解釋參與者可以在不同深度中互動。本研究結果可作為立體環境下發展水平選單設計的重要參考,也有助於改善未來3D應用程式的直接互動方式。


Nowadays 3D application usage become more popular. Many people are becoming intimate with the use of 3D application. However, there are still some problem with the interaction in 3D environment. Especially in direct interaction, people usually feel difficulty when they interact with 3D object directly. Therefore, this study observe interaction performance on hierarchal menu design in the real and stereoscopic environment. This study using direct interaction technique to interact with the menu. In this study, five variables measured such as movement time, performance, accuracy, correction time and peak velocity. There were two kind of environment, three levels of depth and three index of difficulty that consider in this study experiment. This experiment recruit 12 voluntary participants with normal eyes condition. The result in this study show direct interaction performance better in real environment than in stereoscopic environment. In the stereoscopic environment, participant perform longer time and slower than in real environment. Levels of depth not give significant value almost in all variable except accuracy. It explain participant can perform in each levels of depth. The finding of this study can be important aspect to be consider for development in hierarchical menu design in 3D stereoscopic environment. This study also can contribute to improve direct interaction in future 3D application.

摘要 i ABSTRACT ii ACKNOWLEDGEMENTS iii CONTENTS iv LIST OF TABLES vi LIST OF FIGURES vii 1 CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Research Objective 3 1.3 Research Scope 4 1.3.1 Assumption & Limitation 4 2 CHAPTER 2 LITERATURE REVIEW 5 2.1 Virtual Reality 5 2.2 Stereoscopic Image 6 2.3 Interaction Technique 8 2.4 Menu 10 2.5 Index of Difficulty 11 3. CHAPTER 3 METHODOLOGY & EXPERIMENTAL DESIGN 12 3.1 Research Methodology 12 3.1.1 Identification Stage 12 3.1.2 Experiment Stage 12 3.2 Experimental Design 13 3.2.1 Research Model 13 3.3 Participants 14 3.4 Experiment Model 15 3.4.1 Independent Variable 15 3.4.2 Dependent Variable 21 3.4.3 Subjective Questionnaires 23 3.5 Apparatus 24 3.6 Procedure 25 3.7 Collecting Data 28 3.8 Hypothesis and Prediction 28 4. CHAPTER 4 RESULT 30 4.1 Data Processing 30 4.1.1 Movement Time 30 4.1.2 Accuracy 32 4.1.3 Index of Performance 36 4.1.4 Correction Time 38 4.1.5 Peak Velocity 39 4.1.6 Subjective Questionnaire 42 5. CHAPTER 5 DISCUSSION 45 5.1 Real and Stereoscopic Environments 45 5.2 Effect of Depth 46 5.3 Effect of ID 47 5.4 Subjective Questionnaires 47 CHAPTER 6 CONCLUSION AND FUTURE RESEARCH 48 REFRENCES 49 APPENDIXES 53 Appendix A : Participant Consent Form 53 Appendix B: Questionnaires 56

Accot, J., & Zhai, S. (1997). Beyond Fitts' law: models for trajectory-based HCI tasks. Paper presented at the Proceedings of the ACM SIGCHI Conference on Human factors in computing systems.
Benko, H., Wilson, A. D., & Baudisch, P. (2006). Precise selection techniques for multi-touch screens. Paper presented at the Proceedings of the SIGCHI conference on Human Factors in computing systems.
Bowman, D., Kruijff, E., LaViola Jr, J. J., & Poupyrev, I. P. (2004). 3D User Interfaces: Theory and Practice, CourseSmart eTextbook: Addison-Wesley.
Bowman, D. A. (1999). Interaction techniques for common tasks in immersive virtual environments. Georgia Institute of Technology.
Bruder, G., Steinicke, F., & Sturzlinger, W. (2013). To touch or not to touch?: comparing 2D touch and 3D mid-air interaction on stereoscopic tabletop surfaces. Paper presented at the Proceedings of the 1st symposium on Spatial user interaction.
Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology (Vol. 1): John Wiley & Sons.
Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., & Ivkovic, M. (2011). Augmented reality technologies, systems and applications. Multimedia Tools and Applications, 51(1), 341-377.
Chan, L.-W., Kao, H.-S., Chen, M. Y., Lee, M.-S., Hsu, J., & Hung, Y.-P. (2010). Touching the void: direct-touch interaction for intangible displays. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
Colley, A., Häkkilä, J., Schöning, J., Daiber, F., Steinicke, F., & Krüger, A. (2013). Touch the 3rd dimension! Understanding stereoscopic 3D touchscreen interaction. Paper presented at the Australian Computer-Human Interaction Conference.
Datcu, D., Lukosch, S., & Brazier, F. (2015). On the usability and effectiveness of different interaction types in augmented reality. International Journal of Human-Computer Interaction, 31(3), 193-209.
Dix, A. (2004). Human-computer interaction and web design.
Earnshaw, R. A. (2014). Virtual reality systems: Academic press.
Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of experimental psychology, 47(6), 381.
Herndon, K. P., van Dam, A., & Gleicher, M. (1994). The challenges of 3D interaction: a CHI'94 workshop. ACM SIGCHI Bulletin, 26(4), 36-43.
Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks, M. S. (2008). Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. Journal of vision, 8(3), 33-33.
ISO, I. 9241-9 Ergonomic requirements for office work with visual display terminals (VDTs)-Part 9: Requirements for non-keyboard input devices (FDIS-Final Draft International Standard), 2000. International Organization for Standardization.
Jacko, J. A., Salvendy, G., & Koubek, R. J. (1995). Modelling of menu design in computerized work. Interacting with Computers, 7(3), 304-330.
Jacoby, R. H., & Ellis, S. R. (1992). Using virtual menus in a virtual environment. Paper presented at the Visual Data Interpretation.
Jankowski, J., & Hachet, M. (2015). Advances in interaction with 3D environments. Paper presented at the Computer Graphics Forum.
Jeong, S., Jung, E. S., & Im, Y. (2016). Ergonomic evaluation of interaction techniques and 3D menus for the practical design of 3D stereoscopic displays. International Journal of Industrial Ergonomics, 53, 205-218.
Jumisko-Pyykkö, S., Strohmeier, D., Utriainen, T., & Kunze, K. (2010). Descriptive quality of experience for mobile 3D video. Paper presented at the Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries.
Kim, N., Kim, G. J., Park, C.-M., Lee, I., & Lim, S. H. (2000). Multimodal Menu Presentation and Selection in Immersive Virtual Environments. Paper presented at the vr.
Kooi, F. L., & Toet, A. (2004). Visual comfort of binocular and 3D displays. Displays, 25(2), 99-108.
Kumar, R. (2011). Human computer interaction: Firewall Media.
Lin, C. J., & Widyaningrum, R. (2016). Eye Pointing in Stereoscopic Displays. Journal of Eye Movement Research, 9(5).
Lin, C. J., & Woldegiorgis, B. H. (2017). Egocentric distance perception and performance of direct pointing in stereoscopic displays. Applied Ergonomics, 64, 66-74.
Lin, C. J., & Woldegiorgis, B. H. (2018). Kinematic analysis of direct pointing in projection-based stereoscopic environments. Human movement science, 57, 21-31.
Lubos, P., Bruder, G., & Steinicke, F. (2015). Influence of Comfort on 3D Selection Task Performance in Immersive Desktop Setups. Journal of Virtual Reality and Broadcasting (JVRB), 12(2).
MacKenzie, I. S. (1992). Fitts' law as a research and design tool in human-computer interaction. Human-computer interaction, 7(1), 91-139.
McLaughlin, A. C., Rogers, W. A., & Fisk, A. D. (2009). Using direct and indirect input devices: Attention demands and age-related differences. ACM Transactions on Computer-Human Interaction (TOCHI), 16(1), 2.
Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum. Paper presented at the Telemanipulator and telepresence technologies.
Mistry, P., Maes, P., & Chang, L. (2009). WUW-wear Ur world: a wearable gestural interface. Paper presented at the CHI'09 extended abstracts on Human factors in computing systems.
Norman, K. L., & Chin, J. P. (1988). The effect of tree structure on search in a hierarchical menu selection system. Behaviour & Information Technology, 7(1), 51-65.
Ortega, F. R., Abyarjoo, F., Barreto, A., Rishe, N., & Adjouadi, M. (2016). Interaction Design for 3D User Interfaces: The World of Modern Input Devices for Research, Applications, and Game Development: CRC Press.
Paap, K. R., & Cooke, N. J. (1997). Design of menus Handbook of Human-Computer Interaction (Second Edition) (pp. 533-572): Elsevier.
Seigle, D. (2009). 3rd dimension: dimensionalization. Veritas et Visus, 4(3), 69-75.
Stellmach, S., & Dachselt, R. (2012). Look & touch: gaze-supported target acquisition. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
Thompson, S. G., McConnell, D. S., Slocum, J. S., & Bohan, M. (2007). Kinematic analysis of multiple constraints on a pointing task. Human movement science, 26(1), 11-26.
Woldegiorgis, B. H. (2016). Investigation of Interaction Performances in Stereoscopic Displays.

無法下載圖示 全文公開日期 2023/01/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE