簡易檢索 / 詳目顯示

研究生: 施佳鋭
Hening - Marlistya Citraningrum
論文名稱: Removal of Tetramethylammonium Hydroxide (TMAH) from Aqueous Solution Using Ion Exchange
Removal of Tetramethylammonium Hydroxide (TMAH) from Aqueous Solution Using Ion Exchange
指導教授: 劉志成
Jhy-Chern Liu
口試委員: Suryadi Ismadji
Suryadi Ismadji
朱義旭
Yi-Hsu Ju
江志強
Jyh-Chiang Jiang
Truong Chi Thanh
Truong Chi Thanh
蔡伸隆
Shen-Long Tsai
陳嘉明
Chen Jia Ming
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 120
中文關鍵詞: 離子交換離子干擾選擇係數半導體氫氧化四甲銨薄膜電晶體液晶顯示器廢水
外文關鍵詞: ion exchange, semiconductor, selectivity coefficient, tetramethylammonium hydroxide, thin-film transistor liquidcrystal display, wastewater, interfering ions
相關次數: 點閱:620下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著薄膜電晶體液晶顯示器與半導體產業的發展,生產過程廣泛使用的化學藥品也隨之增加。其中,氫氧化四甲銨(Tetramethylammonium hydroxide, TMAH) 是發光二極體生產使用顯影劑的主要成分,同時也運用於半導體製造中的鹼性蝕刻液和清洗液。由於含有氫氧化四甲銨的廢水溶液具有強鹼性與劇毒性,因此排放前必須妥善處理。
本研究利用商業化離子交換樹脂進行離子交換程序,並探討強酸與弱酸兩種陽離子交換樹脂對於氫氧化四甲銨溶液的去除效能。研究結果顯示,強酸陽離子樹脂與弱酸陽離子交換樹脂分別進行離子交換程序20分鐘與40分鐘後即可達到平衡。並將實驗數據利用Pseudo二階動力學方程式表示,相較於弱酸陽離子交換樹脂,強酸陽離子交換樹脂具有較快的交換速率。在研究溶液pH的影響中,當溶液平衡pH值維持高於6.5時,發現影響較大的為弱酸陽離子交換樹脂。利用Freundlich和Langmuir吸附等溫曲線計算,結果顯示吸附作用是合適的,根據Langmuir參數,弱酸陽離子交換樹脂與TMA+具有較強的交互作用。經過鹽酸進行脱附作用後,顯示本研究使用之離子交換樹脂進行五個循環程序後仍然維持良好去除效能。計算TMA+吸附的選擇系數,分別得到強酸陽離子交換樹脂為5.16,弱酸陽離子交換樹脂為46.28。
由於溶液中的干擾離子會影響TMA+的吸附,因此,本研究進而探討不同離子對於TMA+進行離子交換程序過程中的吸附影響。結果發現,由於胺分子與離子交換樹脂之間的強交互作用,因此TMA+的吸附程度下降37%。


Due to the rise in thin-film transistor liquid crystal display and semiconductor manufacturing, amount of chemicals extensively used in production process have increased as well. Tetramethylammonium hydroxide (TMAH) is one the chemicals, widely used as a major ingredient of photoresist developer in light emitting diode (LED) production, as well as an alkaline etchant and cleaning solution in semiconductor manufacturing. TMAH is a strong base and highly toxic, thus TMAH-containing wastewater has to be properly treated before it is discharged to the environment.
In this study, ion exchange process using commercial ion exchange resin was selected. Two cation exchange resins, namely strong acid (SAC) and weak acid (WAC) cation exchange resin were used to remove TMAH from aqueous solution. Both resins showed high TMA+ ion removal. Ion exchange process was completed within 20 minutes when using SAC and 40 minutes when using WAC. Pseudo second order kinetics model was chosen to represent experimental data, which showed that SAC has faster exchange rate compared to WAC. Investigation on the effect of solution pH revealed WAC was more predominantly affected, and equilibrium pH above 6.5 needs to be maintained. Freundlich and Langmuir adsorption isotherm showed that adsorption was favorable; with Langmuir parameters implied that WAC has stronger interaction with TMA+ compared to SAC. Desorption study using HCl suggested that ion exchange resins used in this study can performed well after 5 cycles. Calculated selectivity coefficient for TMA+ uptake using SAC and WAC was 5.16 and 46.28, respectively.
The presence of interfering ions, both simple and more complex ones, affected TMA+ uptake. When amines were present in solution, the extent of TMA+ uptake decrease was as high as 37%, due to strong interaction between resin matrix with amine molecule

CONTENTS ABSTRACTi ABSTRACT (in Chinese)ii ACKNOWLEDGEMENTSiii NOMENCLATURESiv CONTENTSv LIST OF FIGURESvii LIST OF TABLESviii CHAPTER 1.INTRODUCTION1-1 1.1.Background1-1 1.2.Objective1-2 1.3.Scope of research1-2 CHAPTER 2.LITERATURE REVIEW2-1 2.1.Tetramethylammonium hydroxide (TMAH)2-1 2.2.Treatment of TMAH-containing wastewater2-2 2.3.Ion exchange2-7 2.4.Ion exchangers2-8 2.5.Kinetics2-10 2.6.Ion exchange equilibrium2-11 2.6.1.Adsorption isotherms2-11 2.6.2.Selectivity coefficient2-12 2.7.The effect of interfering ions on ion exchange2-13 2.8.Basicity of amines2-15 CHAPTER 3. MATERIALS AND METHODS3-1 3.1.Materials3-1 3.2.Instruments3-2 3.3.Experimental designs and methods3-2 3.3.1.Resin preparation3-3 3.3.2.Surface area measurement of WAC3-4 3.3.3.Ion exchange of TMAH3-5 3.3.3.1. Adsorption isotherm3-6 3.3.3.2. Kinetic study3-6 3.3.3.3. Effect of pH3-7 3.3.3.4. Regeneration study3-8 3.3.3.5. Selectivity coefficient determination (SAC and WAC)3-9 3.3.3.6. Selectivity coefficient determination (interfering ions)3-9 3.3.3.7. Effect of interfering ions on TMA+ uptake3-10 3.4.Ab-initio proton affinity calculation3-10 3.4.1.Information on GaussView 5.03-11 3.4.2.Gaussian command3-11 CHAPTER 4. RESULTS AND DISCUSSION4-1 4.1.Resin characterization - SEM4-1 4.2.Equilibrium time determination of TMA+ uptake using cation exchange resin4-2 4.3.Effect of resin dose on TMA+ uptake4-4 4.4.Adsorption isotherms of TMA+ uptake4-6 4.5.Reaction kinetics of TMA+ uptake4-9 4.6.Desorption study4-12 4.7.Ion exchange modeling4-16 4.7.1.SAC4-17 4.7.2.WAC4-18 4.8.Effect of interfering ions on TMA+ uptake using SAC4-22 4.8.1.Ammonium, potassium, magnesium, sodium4-22 4.6.2.Primary, secondary, tertiary amines4-30 4.9.Discussion CHAPTER 5.CONCLUSIONS AND RECOMMENDATIONS5-1 5.1.Conclusions5-1 5.2.Recommendations5-2 REFERENCESR-1 APPENDIX A: EXPERIMENTAL DATAA-1 APPENDIX B: GAUSSIAN OUTPUTB-1

Al-Othman, Z. A., Inamuddin and Naushad, M. (2011). Determination of ion-exchange kinetic parameters for the poly-o-methoxyaniline Zr(IV) molybdate composite cation-exchanger. Chemical Engineering Journal, 166, 639-645.
Alexandratos, S. D. (2008). Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research. Industrial & Engineering Chemistry Research, 48, 388-398.
Alvarado, L., Torres, I. R. and Chen, A. (2013). Integration of ion exchange and electrodeionization as a new approach for the continuous treatment of hexavalent chromium wastewater. Separation and Purification Technology, 105, 55-62.
Booker, N. A., Cooney, E. L. and Priestley, A. J. (1996). Ammonia removal from sewage using natural Australian zeolite. Water Science and Technology, 34, 17-24.
Bernardino, R. J. and Cabral, B. J. C. (1999). Structure, Conformational Equilibrium, and Proton Affinity of Calix[4]arene by Density Functional Theory. The Journal of Physical Chemistry A, 103, 9080-9085.
Blanchard, G., Maunaye, M. and Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18, 1501-1507.

Bleiholder, C., Suhai, S. and Paizs, B. (2006). Revising the Proton Affinity Scale of the Naturally Occurring α-Amino Acids. Journal of the American Society for Mass Spectrometry, 17, 1275-1281.
Bordawekar, S. V. and Davis, R. J. (2000). Probing the Basic Character of Alkali-Modified Zeolites by CO2 Adsorption Microcalorimetry, Butene Isomerization, and Toluene Alkylation with Ethylene. Journal of Catalysis, 189, 79-90.
Chandra, T. C., Mirna, M. M., Sudaryanto, Y. and Ismadji, S. (2007). Adsorption of basic dye onto activated carbon prepared from durian shell:Studies of adsorption equilibrium and kinetics. Chemical Engineering Journal, 127, 121-129.
Chang, K.-F., Yang, S.-Y., You, H.-S. and Pan, J. R. (2008). Anaerobic treatment of tetra-methyl ammonium hydroxide (TMAH) containing wastewater. IEEE Transactions on Semiconductor Manufacturing, 21, 486-491.
Chen, T. K. and Chen, J. N. (2004). Combined membrane bioreactor (MBR) and reverse osmosis (RO) system for thin-film transistor-liquid crystal display TFT-LCD, industrial wastewater recycling. Water Science and Technology, 50, 99-106.
Chen, Y., Pan, B., Li, H., Zhang, W., Lv, L. and Wu, J. (2010). Selective Removal of Cu(II) Ions by Using Cation-exchange Resin-Supported Polyethyleneimine (PEI) Nanoclusters. Environmental Science and Technology, 44, 3508-3513.
Da̧browski, A., Hubicki, Z., Podkościelny, P. and Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56, 91-106.

Dentel, S. K., Jamrah, A. I. and Sparks, D. L. (1998). Sorption and cosorption of 1,2,4-trichlorobenzene and tannic acid by organo-clays. Water Research, 32, 3689-3697.
Do, D. D. (1998). Adsorption Analysis: Equilibria And Kinetics. Imperial College Press, London.
Du, Q., Liu, S., Cao, Z. and Wang, Y. (2005). Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Separation and Purification Technology, 44, 229-234.
Feng, H., Huang, C. and Xu, T. (2008). Production of Tetramethyl Ammonium Hydroxide Using Bipolar Membrane Electrodialysis. Industrial & Engineering Chemistry Research, 47, 7552-7557.
Flores, V. and Cabassud, C. (1999). A hybrid membrane process for Cu(II) removal from industrial wastewater Comparison with a conventional process system. Desalination, 126, 101-108
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., J. A. Montgomery, J., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. and Fox, D. J. (2009). Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT.
Graham, D. (1955). Characterization of Physical Adsorption Systems. III. The Separate Effects of Pore Size and Surface Acidity upon the Adsorbent Capacities of Activated Carbons. The Journal of Physical Chemistry, 59, 896-900.
Hang, P. T. and Brindley, G. W. (1970). Methylene blue absorption by clay minerals: determination of surface areas and cation exchange capacities (clay-organic studies XVII). Clays and Clay Minerals, 18, 203-212.
Hankins, N. P., Pliankarom, S. and Hilal, N. (2005). Removal of NH4+ Ion from NH4Cl Solution Using Clinoptilolite: A Dynamic Study Using a Continuous Packed‐Bed Column in Up‐Flow Mode. Separation Science and Technology, 39, 1347-1364.
Hardell, H.-L. and Nilvebrant, N.-O. (1999). A rapid method to discriminate between free and esterified fatty acids by pyrolytic methylation using tetramethylammonium acetate or hydroxide. Journal of Analytical and Applied Pyrolysis, 52, 1-14.
Helfferich, F. (1995). Ion Exchange. Dover Publications, Inc., New York.
Hirano, K., Okamura, J., Taira, T., Sano, K., Toyoda, A. and Ikeda, M. (2000). An efficient treatment technique for TMAH wastewater by catalytic oxidation. Semiconductor Manufacturing, 2000. Proceedings of ISSM 2000. The Ninth International Symposium on, 2000, pp. 139-142.
Ho, Y. S. and McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451-465.

Holownia, P., Perez-Amodio, S. and Price, C. P. (2001). Effect of Poly(ethylene glycol), Tetramethylammonium Hydroxide, and Other Surfactants on Enhancing Performance in a Latex Particle Immunoassay of C-Reactive Protein. Analytical Chemistry, 73, 3426-3431.

Hu, T.-H., Whang, L.-M., Liu, P.-W. G., Hung, Y.-C., Chen, H.-W., Lin, L.-B., Chen, C.-F., Chen, S.-K., Hsu, S. F., Shen, W., Fu, R. and Hsu, R. (2012). Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant. Bioresource Technology, 113, 303-310.
Inglezakis, V. J., Zorpas, A. A., Loizidou, M. D. and Grigoropoulou, H. P. (2005). The effect of competitive cations and anions on ion exchange of heavy metals. Separation and Purification Technology, 46, 202-207.
Jorgensen, T. C. and Weatherley, L. R. (2003). Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Research, 37, 1723-1728.
Juan, R., Hernandez, S., Andres, J. M. and Ruiz, C. (2009). Ion exchange uptake of ammonium in wastewater from a Sewage Treatment Plant by zeolitic materials from fly ash. Journal of Hazardous materials, 161, 781-786.
Juang, R.-S. and Wang, Y.-C. (2002). Effect of Added Complexing Anions on Cation Exchange of Cu(II) and Zn(II) with a Strong-Acid Resin. Industrial & Engineering Chemistry Research, 41, 5558-5564.
Kadirvelu, K. and Namasivayam, C. (2003). Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution. Advances in Environmental Research, 7, 471-478.
Katz, E., Eksteen, R., Schoenmakers, P. and Miller, N. (1998). Handbook of HPLC, Chromatographic Science Series Marcel Dekker, Inc., New York.

Kelleher, B. P., Doyle, A. M., O'Dwyer, T. F. and Hodnett, B. K. (2001). Preparation and use of a mesoporous silicate material for the removal of tetramethylammonium hydroxide (TMAH) from aqueous solution. Journal of Chemical Technology and Biotechnology, 76, 1216-1222..
Khan, A. A. and Inamuddin. (2006). Applications of Hg(II) sensitive polyaniline Sn(IV) phosphate composite cation-exchange material in determination of Hg2+ from aqueous solutions and in making ion-selective membrane electrode. Sensors and Actuators B: Chemical, 120, 10-18.

Kuntz, A. F., Boynton, A. W., David, G. A., Colyer, K. E. and Poutsma, J. C. (2002). The proton affinity of proline analogs using the kinetic method with full entropy analysis. Journal of the American Society for Mass Spectrometry, 13, 72-81.

Kurniawan, T. A., Chan, G. Y. S., Lo, W.-H. and Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118, 83-98.

Leaković, S., Mijatović, I., Cerjan-Stefanović, Š. and Hodžić, E. (2000). Nitrogen removal from fertilizer wastewater by ion exchange. Water Research, 34, 185-190.

Lei, C.-N., Whang, L.-M. and Chen, P.-C. (2010). Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors. Chemosphere, 81, 57-64.
Lias, S. G., Liebman, J. F. and Levin, R. D. (1964). Evaluated gas phase basicities and proton affinities of molecules: Heats of formation of protonated molecules. Journal of Physical and Chemical Reference Data, 13, 695-808.
Li, H., Zheng, Z., Cao, M. and Cao, R. (2010). Stable gold nanoparticle encapsulated in silica-dendrimers organic–inorganic hybrid composite as recyclable catalyst for oxidation of alcohol. Microporous and Mesoporous Materials, 136, 42-49.

Lin, C.-C., Yang, C.-C., Ger, J., Deng, J.-F. and Hung, D.-Z. (2010). Tetramethylammonium hydroxide poisoning. Clinical Toxicology, 48, 213-217.
Malekian, R., Abedi-Koupai, J., Eslamian, S. S., Mousavi, S. F., Abbaspour, K. C. and Afyuni, M. (2011). Ion-exchange process for ammonium removal and release using natural Iranian zeolite. Applied Clay Science, 51, 323-329.
McKinney, D. E., Bortiatynski, J. M., Carson, D. M., Clifford, D. J., De Leeuw, J. W. and Hatcher, P. G. (1996). Tetramethylammonium hydroxide (TMAH) thermochemolysis of the aliphatic biopolymer cutan: insights into the chemical structure. Organic Geochemistry, 24, 641-650.
McKinney, D. E. and Hatcher, P. G. (1996). Characterization of peatified and coalified wood by tetramethylammonium hydroxide (TMAH) thermochemolysis. International Journal of Coal Geology, 32, 217-228.
Meyers, P. (1999). Application of weak acid cation resin in waste treatment. In: AESF Conference, Florida.
Miessler, G. L. and Tarr, D. A. (2004). Inorganic Chemistry. Pearson Prentice Hall, New Jersey.
Moon, J.-K., Kim, K.-W., Jung, C.-H., Shul, Y.-G. and Lee, E.-H. (2000). Preparation of Organic-Inorganic Composite Adsorbent Beads for Removal of Radionuclides and Heavy Metal Ions. Journal of Radioanalytical and Nuclear Chemistry, 246, 299-307.

Nabi, S. A. and Shalla, A. H. (2009). Synthesis, characterization and analytical application of hybrid; Acrylamide zirconium (IV) arsenate a cation exchanger, effect of dielectric constant on distribution coefficient of metal ions. Journal of Hazardous materials, 163, 657-664.

Nightingale, E. R. (1959). Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. Journal of Physical Chemistry, 63, 1381-1387.
Nilchi, A., Khanchi, A., Atashi, H., Bagheri, A. and Nematollahi, L. (2006). The application and properties of composite sorbents of inorganic ion exchangers and polyacrylonitrile binding matrix. Journal of Hazardous materials, 137, 1271-1276.

Pandit, B. and Chudasama, U. (2001). Synthesis, characterization and application of an inorgano organic material:p-chlorophenol anchored onto zirconium tungstate. Bulletin of Materials Science, 24, 265-271.

Pashley, R. and Karaman, M. (2004). Applied Colloid and Surface Chemistry. Wiley, West Sussex, UK.
Pehlivan, E. and Altun, T. (2006). The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50W synthetic resin. Journal of Hazardous materials, 134, 149-156.
Pintar, A., Batista, J. and Levec, J. (2001). Integrated ion exchange/catalytic process for efficient removal of nitrates from drinking water. Chemical Engineering Science, 56, 1551-1559.

Pirogov, A. V., Chernova, M. V., Nemtseva, D. S. and Shpigun, O. A. (2003). Sulfonated and sulfoacylated poly(styrene-divinylbenzene) copolymers as packing materials for cation chromatography. Analytical and Bioanalytical Chemistry, 376, 745-752.
Prahas, D., Liu, J., Ismadji, S. and Wang, M. (2012). Adsorption of Tetramethylammonium Hydroxide on Activated Carbon. Journal of Environmental Engineering, 138, 232-238.
Rao, J. S. and Sastry, G. N. (2006). Proton affinity of five-membered heterocyclic amines: Assessment of computational procedures. International Journal of Quantum Chemistry, 106, 1217-1224.
Rudakova, A. V., Lobo, R. F. and Bulanin, K. M. (2003). FT-IR study of carbon monoxide adsorption on Li-exchanged zeolite X. Journal of Physical Chemistry B, 107, 5212-5220.

Savitz, S., Myers, A. L. and Gorte, R. J. (2000). A calorimetric investigation of CO, N2, and O2 in alkali-exchanged MFI. Microporous and Mesoporous Materials, 37, 33-40.

Shibata, J., Murayama, N. and Matsumoto, S. (2006). Recovery of Tetra-Methyl Ammonium Hydroxide from Waste Solution by Ion Exchange Resin. Resources Processing, 53, 199-203.
Steinsland, E., Finstad, T. and Hanneborg, A. (2000). Etch rates of (100), (111) and (110) single-crystal silicon in TMAH measured in situ by laser reflectance interferometry. Sensors and Actuators A: Physical, 86, 73-80.

Stumm, W. and Morgan, J. J. (1981). Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. John Wiley & Sons.
Sugawara, H., Tajima, Y. and Ohmi, T. (2002). A Study on Reclaimed Photoresist Developer Using an Electrodialysis Method. Japanese Journal of Applied Physics Part 1, 41, 2374-2379
Tanaka, K. (1994). Anaerobic degradation of tetramethylammonium by a newly isolated marine methanogen. Journal of Fermentation and Bioengineering, 78, 386-388.
Tchobanoglous, G., Burton, F. and Stensel, H. D. (2002). Wastewater Engineering: Treatment and Reuse. McGraw-Hill Higher Education, Singapore.
Thong, J. T. L., Choi, W. K. and Chong, C. W. (1997). TMAH etching of silicon and the interaction of etching parameters. Sensors and Actuators, A, 63, 243-249.
Thornton, A., Pearce, P. and Parsons, S. A. (2007). Ammonium removal from solution using ion exchange on to MesoLite, an equilibrium study. Journal of Hazardous materials, 147, 883-889.
Tsuzaki, M. and Nakamoto, S. (1990). Biodegradation of tetramethylammonium, an ingredient of a positive photoresist developer, by bacteria isolated from activated sludge. NEC Res. Dev., 97, 8-12.

Ugliengo, P., Garrone, E., Ferrari, A. M., Zecchina, A. and Otero Arean, C. (1999). Quantum chemical calculations and experimental evidence for O-bonding of carbon monoxide to alkali metal cations in zeolites. Journal of Physical Chemistry B, 103, 4839-4846.

Urakami, T., Araki, H. and Kobayashi, H. (1990). Isolation and identification of tetramethylammonium-biodegrading bacteria. Journal of Fermentation and Bioengineering, 70, 41-44.
Valverde, J. L., De Lucas, A., Carmona, M., Perez, J. P., Gonzalez, M. and Rodriguez, J. F. (2006). Minimizing the environmental impact of the regeneration process of an ion exchange bed charged with transition metals. Separation and Purification Technology, 49, 167-173.

Wang, Y., Liu, S., Xu, Z., Han, T., Chuan, S. and Zhu, T. (2006). Ammonia removal from leachate solution using natural Chinese clinoptilolite. Journal of Hazardous materials, 136, 735-740.
Wu, C.-L., Su, S.-B., Chen, J.-L., Chang, C.-P. and Guo, H.-R. (2012a). Tetramethylammonium ion causes respiratory failure related mortality in a rat model. Resuscitation, 83, 119-124.
Wu, C. L., Su, S. B., Chen, J. L., Lin, H. J. and Guo, H. R. (2008a). Mortality from dermal exposure to tetramethylammonium hydroxide. J Occup Health, 50, 99-102.
Wu, C. L., Su, S. B., Lien, H. Y. and Guo, H. R. (2012b). The role of the chemical burns caused by hydroxide ion in the toxicity of dermal exposure to tetramethylammonium ion in a rat model. Burns, 38, 1051-1057.
Wu, Y. J., Whang, L. M., Huang, S. J., Yang, Y. F., Lei, C. N. and Cheng, S. S. (2008b). Evaluation of performance and microbial ecology of sequencing batch reactor and membrane bioreactor treating thin-film transistor liquid crystal display wastewater. Water Science and Technology, 58, 1085-1093.
Yoshida, H. and Kataoka, T. (1987). Adsorption of amines and ammonia on H+ form ion exchanger. Chemical Engineering Science, 42, 1805-1814.
Zheng, H., Han, L., Ma, H., Zheng, Y., Zhang, H., Liu, D. and Liang, S. (2008). Adsorption characteristics of ammonium ion by zeolite 13X. Journal of Hazardous materials, 158, 577-584.

無法下載圖示 全文公開日期 2018/07/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE