簡易檢索 / 詳目顯示

研究生: 趙宜峯
Yi-Feng Chao
論文名稱: 整合自動建模方法與動態歷時分析之區域震損模擬-以臺灣之典型校舍為例
Integration of Automatic Modeling Method and Time-History Analysis for Regional Seismic Damage Simulation – A Case Study of Typical School Buildings in Taiwan
指導教授: 陳鴻銘
Hung-Ming Chen
口試委員: 謝尚賢
Shang-Hsien Hsieh
黃世建
Shyh-Jiann Hwang
鍾立來
Lap-Loi Chung
謝佑明
Yo-Ming Hsieh
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 162
中文關鍵詞: 震損模擬自動建模動態歷時分析校舍
外文關鍵詞: Seismic Damage Simulation, Automatic Modeling, Time-History Analysis, School Buildings
相關次數: 點閱:378下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今常見的震損評估方法主要是依結構物屬性分類,再對各類結構物的樣本之分析結果進行迴歸分析,之後即可查詢以迴歸求得的參數表與公式得到欲評估結構物的近似性能曲線,再以其與需求曲線進行迭代得到震損評估結果,因此結構物分類的詳細程度將影響其結果之準確性,若能以建物之基本屬性資料建立數值分析模型,再透過結構分析得到其結果,將可提昇震損評估結果之準確性,因此本研究提出整合自動建模方法與動態歷時分析之區域震損模擬,其先是以自動建模技術整合校舍資料庫與結構物非線性構件模型元件庫,並搭配使用者對建物及其材料性質進行專業的選擇及設定,即可快速自動產生大量專屬於各個結構物的數值分析模型,再配合使用者上傳的地震歷時資料即可對這些結構物進行動態歷時分析,並將其結果配合運用本研究所建置之自動後處理統計分析程序,求得特定甚至是即時地震下校舍之震損狀況及其構件受震行為等相關資訊,進一步讓震損評估與模擬結果不再只有一個可能造成的損害機率或是指標,而是可以提供更多可輔助決策的資料以供參考,本研究將所提方法自動建模的結果與國震中心對真實結構之詳細側推分析與試驗的結果比較以驗證其準確性,並進一步將其模擬的結果與921集集地震之校舍勘災結果比較以驗證其可靠度,結果顯示本研究所提出之區域震損模擬方法能基於較詳細且個別化的動態歷時分析,提供更詳細且擬真的震損評估與模擬結果。


In a typical seismic damage assessment, structures are classified according to their usage and type, and then structural analysis is performed on all sampled structures of the same group to derive a parametric equation using statistical regression. Parameters for different types of structures can be obtained from reference tables and substituted into this derived formula to obtain the capacity curve of the structure. The capacity curve from statistical regression and the seismic demand curve are iterated to find the damage levels and corresponding probabilities. Its accuracy is affected by the level of detail in classification and the approximation in regression. If models can be constructed based on the basic properties of a structure and their responses can be obtained from structural analysis of these models, the accuracy and details of seismic damage assessment can be improved. This study proposes a new method for regional seismic damage assessment. An automatic modeling method is first developed to construct models of school buildings from a property database and component models. With professionally pre-set settings, detailed regional seismic damage can then be assessed by performing Time History Analysis on automatically generated models. In this manner, more detailed and accurate responses of all school buildings in a region under a specific earthquake can be obtained through numerical simulation based on the time history record of that earthquake. The accuracy and reliability of the proposed method is validated by comparing the base shear - roof displacement curve with data from experimental results and ETABS analysis conducted by the National Center for Research on Earthquake Engineering, as well as data obtained using existing damage assessment methods. Reconnaissance report data on school buildings affected in the Chi-Chi Earthquake is also used for further verification. The proposed regional seismic damage assessment method makes Time History Analysis on individual structures possible to provide a more accurate and detailed damage assessment.

論文摘要I ABSTRACTII 誌  謝III 目  錄IV 圖表目錄VI 第一章 緒論1 1.1研究動機1 1.2研究目的4 1.3研究範圍9 1.4研究方法9 1.4.1系統開發技術10 1.4.1.1物件導向10 1.4.1.1.1封裝(Encapsulation)11 1.4.1.1.2繼承(Inheritance)11 1.4.1.1.3多型(Polymorphism)11 1.4.1.2網路傳輸12 1.4.1.2.1多執行緒(Multithread)12 1.4.1.2.2傳輸控制協定/網際協定(TCP/IP)12 1.4.2系統開發工具13 1.4.2.1 PHP程式語言13 1.4.2.2 Java 程式語言13 1.4.2.3 Tcl程式語言14 1.4.2.4 關聯式資料庫(Relational database)14 1.4.2.4.1 實體關聯模型(ER-MODEL)15 1.4.2.4.2 結構化查詢語言(Structured Query Language(SQL))15 1.5論文架構16 第二章 文獻回顧17 2.1應用一般建物基本屬性分類之震損評估17 2.2應用典型校舍基本屬性分類之震損評估19 2.3應用簡化模型分析之震損評估20 第三章 系統功能需求分析與規劃21 3.1自動建模21 3.1.1校舍資料庫22 3.1.2非線性構件模型元件庫24 3.1.3自動建模之假設與流程28 3.1.3.1 自動建模之假設條件28 3.1.3.2 自動建模之標準流程32 3.2結構震損評估與模擬33 3.3分散式運算35 3.3.1專案排程模式38 3.3.2派遣端派遣模式39 3.3.3分析端分析模式42 3.4使用者介面43 第四章 系統功能實現與展示45 4.1自動建模45 4.2結構物震損評估與模擬51 4.2.1動態歷時分析51 4.2.2後處理統計分析程序55 4.3分散式運算58 4.4使用者介面62 第五章 校舍模型動態歷時分析結果驗證75 5.1驗證案例模型之選擇與設定77 5.2驗證案例結果之比較與討論79 第六章 震損評估與模擬案例研究85 6.1驗證案例與分析方法之選擇與設定85 6.2驗證案例之比較與討論88 6.3驗證案例之分散運算加速度與效率97 第七章 結論與未來展望101 7.1結論101 7.2未來展望與建議103 參考文獻107 附錄115

[1]Applied Technology Council, ATC-13 Earthquake Damage Evaluation Data for California, Report No. ATC-13, Redwood City, CA, USA (1985).
[2]Risk Management Solutions, Inc., Earthquake Loss Estimation Method - HAZU97 Technical Manual, National Institute of Building Sciences, Washington, DC, USA (1997).
[3]McCormack, T.C., and Rad, F.N., “An Earthquake Loss Estimation Methodology for Buildings Based on ATC-13 and ATC-21”, Earthquake Spectra, Vol. 13, No. 4, pp. 605-621 (1997).
[4]Jang, J.-J., Lee, C.-S., and Chen, Y.-H., “A Preliminary Study of Earthquake Building Damage and Life Loss due to the Chi-Chi Earthquake”, Journal of the Chinese Institute of Engineers. Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an, Vol. 25, Issue 5, pp.567-576 (2002).
[5]Mansouri, B., Ghafory-Ashtiany, M., Amini-Hosseini, K., Nourjou, R., and Mousavi, M., “Building Seismic Loss Model for Tehran”, Earthquake Spectra, Vol. 26, Issue 1, pp.153-168 (2010).
[6]Xu, F., Chen, X., Ren, A., and Lu, X., “Earthquake Disaster Simulation for an Urban Area, with GIS, CAD, FEA and VR Integration”, Tsinghua Science and Technology, Vol. 13, Issue S1, pp. 311-316 (2008).
[7]Palanci, M., and Senel, S.M., “Rapid Seismic Performance Assessment Method for One Story Hinged Precast Buildings”, Structural Engineering and Mechanics, Vol. 48, Issue 2, pp. 257-274 (2013).
[8]Senel, S.M., and Palanci, M., “Structural Aspects and Seismic Performance of 1-Story Precast Buildings in Turkey”, Journal of Performance of Constructed Facilities, Vol. 27, Issue 4, pp. 437-449 (2013).
[9]Xu, Z., Lu X., Guan, H., Han, B., Ren A., “Seismic damage simulation in urban areas based on a high-fidelity structural model and a physics engine”, Natural Hazards, Vol. 71, Issue 3, pp. 1679-1693 (2014).
[10]Zeng, X., Xu, Z., Lu, X., “Regional seismic damage simulation of buildings: A case study of the tsinghua campus in China”, Congress on Computing in Civil Engineering, Vol. 2015-January, Issue January, pp. 507-514 (2015).
[11]Hsieh, S.-H., Teng, P.-P., and Wang, H.-C., “A Preliminary Parametric Study on Aseismic Capacity of Traditional School Classroom Buildings”, Proceedings of the 5th Seminar on Earthquake Engineering for Building Structures, Kyoto, Japan, pp 109-116 (2003).
[12]Hsieh, S.-H., Tseng, P.-P., and Wang, H.-C., “An Expert System for Preliminary Aseismic Capacity Estimation of Traditional School Classroom Buildings Using Case-Based Reasoning”, Journal of Chinese Civil and Hydraulic Engineering, Vol. 18, No. 1, pp. 95-107 (2006).
[13]Sugihara, K., and Hayashim, Y., “Automatic Generation of 3D Building Models with Multiple Roofs”, Tsinghua Science and Technology, Vol. 13, Issue S1, pp. 368-374 (2008).
[14]Han, B., Lu, X., Xu, Z., and Li, Y., “Seismic Damage Simulation of Urban Buildings Based on High Performance GPU Computing”, Journal of Natural Disasters, Vol. 21, Issue 5, pp. 16-22 (2012).
[15]Xu, Z., Lu, X., Guanb, H., Ren, A., “High-speed visualization of time-varying data in large-scale structural dynamic analyses with a GPU”, Automation in Construction, Vol. 42, pp. 90-99 (2014).
[16]Tian, Y., Xie, L., Xu, Z., and Lu, X., “GPU-Powered High-Performance Computing for the Analysis of Large-Scale Structures Based on Opensees”, Congress on Computing in Civil Engineering 2015, pp. 411-418 (2015).
[17]Kostopanagiotis, C., Kopanos, M., Ioakim, D., Perros, K., and Lagaros, N.D., “Low Cost CPU-GPGPU Parallel Computing in Real-World Structural Engineering”, Journal of Building Engineering, Vol. 4, pp. 209-222 (2015).
[18]黃世建、葉勇凱、鍾立來、簡文郁、陳鴻銘、趙宜峰、周德光、沈文成、高偉格,全國中小學校舍結構耐震評估與補強資料庫建置(一),國家地震工程研究中心報告,報告編號:NCREE-08-035 (2008)。
[19]Lewis, J., and Loftus, W., Java Software Solutions: Foundations of Program Design, 7th ed., Addison-Wesley, MA (2011).
[20]Mitchell, J. C., Concepts in Programming Languages, Cambridge University Press, MA (2002).
[21]Deitel, P., and Deitel, H., Java: How to Program, 9th ed., Prentice Hall, NJ (2011).
[22]Lamport, L., “How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs”, IEEE Transactions on Computers, Vol. C–28, No. 9, pp. 690–691 (1979).
[23]Eggers, S.J., Emer, J.S., Levy, H.M., Lo, J.L., Stamm, R.L., and Tullsen, D.M., “Simultaneous Multithreading: A Platform for Next-Generation Processors”, IEEE Micro, Vol. 17, No. 5, pp. 12-19 (1997).
[24]Suzuki, N., Shared Memory Multiprocessing, The MIT Press, MA (1992).
[25]Forouzan, B., TCP/IP Protocol Suite, 4th ed., McGraw-Hill, NY (2009).
[26]PHP, “https://secure.php.net/manual/en/intro-whatcando.php” (1994).
[27]Flanagan, D., Java in a Nutshell, 5th ed., O'Reilly Media, MA (2005).
[28]Welch, B.B., Jones, K., and Hobbs, J., Practical Programming in Tcl and Tk 1, Prentice Hall PTR, pp. 291, ISBN 0-13-038560-3 (1995).
[29]Chen, P., “The Entity-Relationship Model - Toward a Unified View of Data”, ACM Transactions on Database Systems, Vol. 1, Issue 1, pp. 9-36 (1976).
[30]Codd, E.F., “A Relational Model of Data for Large Shared Data Banks”, Communications of the ACM (Association for Computing Machinery), Vol. 13, Issue 6, pp. 377-387 (1970).
[31]Yeh, C.H., Loh, C.H., Tsai, K.C., “Overview of Taiwan Earthquake Loss Estimation System”, Natural Hazards, Vol. 37, Issue 1, pp.23-27 (2006).
[32]Shaw D., Yeh, C.H., Jean, W.Y., Loh, C.H., ”A Probabilistic Seismic Risk Analysis of Building Losses in Taipei: An Application of Haz‐Taiwan with Its Pre‐Processor and Post‐Processor”, Journal of the Chinese Institute of Engineers, Vol. 30, Issue 2, pp. 289-297 (2007).
[33]Serdar Kirçil, M., Polat, Z., “Fragility analysis of mid-rise R/C frame buildings”, Engineering Structures, Vol. 28, Issue 9, pp. 1335-1345 (2006).
[34]Lin, J.-H., “Seismic Fragility Analysis of Frame Structures”, International Journal of Structural Stability and Dynamics, Vol. 8, Issue 3, pp. 451-463 (2008).
[35]Pessina, V., Meroni, F., “A WebGis tool for seismic hazard scenarios and risk analysis”, Soil Dynamics and Earthquake Engineering, Vol. 29, Issue 9, pp. 1274-1281 (2009).
[36]Senel, S.M., and Kayhan, A.H., “Fragility Based Damage Assessment in Existing Precast Industrial Buildings: A Case Study for Turkey”, Structural Engineering and Mechanics, Vol. 34, No. 1, pp. 39-60 (2010).
[37]Ploeger, S.K., Atkinson, G.M., and Samson, C., “Applying the HAZUS-MH Software Tool to Assess Seismic Risk in Downtown Ottawa, Canada”, Natural Hazards, Vol. 53, Issue 1, pp. 1-20 (2010).
[38]Hashemi, M., and Alesheikh, A.A., “A GIS-Based Earthquake Damage Assessment and Settlement Methodology”, Soil Dynamics and Earthquake Engineering, Vol. 31, Issue 11, pp. 1607-1617 (2011).
[39]Boukri, M., Farsi, M., Mebarki, A., and Belazougui, M., “Development of an Integrated Approach for Algerian Building Seismic Damage Assessment”, Structural Engineering & Mechanics, Vol. 47, No. 4, pp. 471-493 (2013).
[40]Boukri, M., Farsi, M.N., Mebarki, A., and Belazougui, M., “Earthquake Damage Assessment: A Theoretical Framework and Its Application to Algerian Buildings”, WIT Transactions on Information and Communication Technologies, Vol. 47, pp. 153-164 (2014).
[41]Nastev, M., “Adapting Hazus for Seismic Risk Assessment in Canada”, Canadian Geotechnical Journal, Vol. 51, Issue 2, pp. 217-222 (2014).
[42]Xiong, C., Lu, X., Hori, M., Guan, H., Xu, Z., “Building seismic response and visualization using 3D urban polygonal modeling”, Automation in Construction, Vol. 55, pp. 25-34 (2015).
[43]Hwang, H., and Wei, H.-L., “Seismic Damage Assessment of Elementary School Buildings in Taipei City”, In 4th International Conference on Earthquake Engineering, Taipei, Taiwan, October 2006: Paper No. 243 (2006).
[44]Baballëku, M., and Pojani, N., “Fragility Evaluation of Existing Typified School Buildings in Albania”, Acta Geodaetica et Geophysica Hungarica, Vol. 43, Issue 2-3, pp. 309-325 (2008).
[45]Tu, Y.-H., Yeh, P.-L., Liu, T.-W., and Jean, W.-Y., “Seismic Damage Evaluation for Low-Rise RC School Buildings in Taiwan”, Proceedings of the Structure Congress, Austin, USA, April (2009).
[46]Tan, K.T., and Abdul Razak, H., “Assessment of Risk to School Buildings Resulting from Distant Earthquakes”, Procedia Engineering, Vol. 14, pp. 2196-2204 (2011).
[47]Fenves, G.L., McKenna, F., and Scott, M.H., OpenSees User and Developer Workshop, Workshop Handout, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, August (2001).
[48]Chang, S.-Y., Chen, T.-W., and Liao, W.-I., “Experimental Study of Behaviors of Short Columns for Existing Reinforced Concrete Frames Infilled with Relatively High Brick Walls”, Structural Engineering, Vol. 28, Issue 1, pp. 61-84 (2013).
[49]Hsu, M.-S., Kuo, H.-Y., and Deng, S.-H., “Fast Seismic Assessment for RC School and Street-Front Buildings”, Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 14, Issue 1, pp. 21-30 (2002).
[50]Tu, Y.-H., Liu, T.-W., Ao, L.-C., and Yeh, P.-L., “Nonlinear Static Seismic Analysis and Its Validation Using Damage Data from Reinforced-Concrete School Buildings”, 9th US National and 10th Canadian Conference on Earthquake Engineering 2010, Toronto, Canada, July (2010).
[51]Cindrawaty L., “Seismic Capacity Assessment of Compulsory School Buildings in Taiwan”, Master’s thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (2007).
[52]蘇耕立,臺灣中小學校舍結構耐震能力初步評估方法之控討,碩士論文,國立台灣大學土木工程學系,臺北,臺灣 (2008)。
[53]內政部,建築技術規則建築構造編,營建雜誌社,72pp. (2011)。
[54]PEER Ground Motion Database, http://peer.berkeley.edu/smcat/search.html
[55]Allen, R.V., “Automatic earthquake recognition and timing from single traces”, Bulletin of the Seismological Society of America, Vol. 68, no. 5, pp. 1521–1532 (1978).
[56]Trnkoczy, A., “Understanding and parameter setting of STA/LTA trigger algorithm”, IASPEI New Manual of Seismological Observatory Practice, Vol.2, pp. 1–20 (2002).
[57]Federal Emergency Management Agency, Multi-hazard Loss Estimation Methodology Hazus-MH MR5 Technical Manual, Federal Emergency Management Agency Manual, Washington, D.C. (2010).
[58]邱聰智、邱建國、葉勇凱、簡文郁、鍾立來與周德光,典型校舍耐震補強設計與驗證,國家地震工程研究中心報告,報告編號:NCREE-08-038 (2008)。
[59]鍾立來、葉勇凱、簡文郁、柴駿甫、蕭輔沛、沈文成、邱聰智、周德光、趙宜峰、楊耀昇、黃世建,校舍結構耐震評估與補強技術手冊,國家地震工程研究中心報告,報告編號:NCREE-08-023(2008)。
[60]葉勇凱、沈文成、蕭輔沛、周德光,側推分析於校舍現地試驗之驗證,國家地震工程研究中心報告,報告編號:NCREE-08-031(2008)。
[61]Kent, D.C., and Park, R., “Inelastic Behavior of Reinforced Concrete Members with Cyclic Loading”, Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 4, Issue 1, pp. 108-125 (1971).
[62]杜怡萱、葉貝羚、劉子暐,臺灣中部校舍集集地震災損資料庫建立與評估,國家地震工程研究中心報告,報告編號:NCREE-07-023 (2007)。
[63]劉子暐,簡化推垮分析法驗證之研究,碩士論文,國立成功大學建築研究所,臺南,臺灣 (2008)。
[64]葉勇凱、蕭輔沛、曾立明,以921校舍震害驗證耐震詳細評估方法,國家地震工程研究中心報告,報告編號:NCREE-10-023 (2010)。
[65]趙宜峰、陳鴻銘、葉勇凱、簡崑棋、朱奕齊、高偉格,”校舍耐震評估與補強資料庫之建置與應用”,結構工程雜誌,第二十七卷,第一期,pp. 47-60 (2012)。

QR CODE