簡易檢索 / 詳目顯示

研究生: 劉玲娥
Ling-Er Liou
論文名稱: 運用資料探勘技術預測學校建築工程之專案績效
Apply data mining techniques to predict performance of public school building projects in Taiwan
指導教授: 阮怡凱
Yi-Kai Juan
口試委員: 林騰蛟
曾惠斌
顏玉明
彭雲宏
阮怡凱
學位類別: 博士
Doctor
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 126
中文關鍵詞: 資料探勘公立學校建築工程專案績效關聯規則類神經網路
外文關鍵詞: Data mining, Public school building projects (PSBPs), Project performance, Association rules, Artificial Neural Network (ANN)
相關次數: 點閱:345下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來教育部每年投入約新臺幣300億元的經費於公立學校建築工程專案(Public school building projects, PSBPs)。在政府財源日益不足及少子化的情況下,如何有效管控專案的執行績效及資源最適化的分配,將成為政府推行公共建設計畫執行成功與否的關鍵。然而,高達95﹪的學校建築工程專案會發生工期延宕與成本追加之情況,造成專案執行績效普遍不佳。本研究分別透過模糊德爾菲法(Fuzzy Delphi Method)、關聯規則(Association Rules)及類神經網路(Artificial Neural Network)的採用,建構一套PSBPs的績效評估與預測系統,並能在專案初期的規劃設計與招標階段,及施工階段導入,以精準預測專案的未來執行績效並達預警功效。研究實際以全國大專院校62個PSBPs作為樣本,研究結果定義出11個影響建築工程專案績效的高度關聯性因子,並發現在廠商能力與經驗不佳、傳統發包方式、最低標、市場缺工等條件下,更容易導致專案績效較差。而類神經網路所建構的績效預測模型,經實證後發現整體預測準確率可高達84.21﹪,未來可提供學校、設計單位及營造廠商能即時掌握專案執行績效,並建立動態追蹤檢討與因應措施,以提升整體專案的滿意度。


    In recent years, the Ministry of Education of Taiwan invested about NTD 30 billion a year in public school building projects (PSBP). Under the conditions of increasingly insufficient government revenues and low birth rate, effectively control of project performance and optimization of resource allocation will become the key to the success of the government’s public construction program. For example, in Taiwan, 95% of the school building projects’ durations are extended and incur increased costs, resulting in the generally poor project performance. In this study, a PSBP performance evaluation and prediction system was established by the Fuzzy Delphi Method, Association rules and Artificial Neural Network (ANN), and imported in the planning and design, bidding and construction phases at the beginning of the projects, to accurately predict future projects’ performance and realize early warnings about such projects. 62 PSBPs in Taiwan were used as the samples. According to the study’s results, 11 high correlation factors which influence building project performance were defined. It was found that poor project performance was more likely to occur due to firms’ poor capability and experience, traditional contract-issuing mode, minimum bid, and labor shortage in the market. Moreover, this empirical study shows that the performance prediction model established by ANN had an overall prediction accuracy of up to 84.21%. Hence, in the future, it can be provided to schools, design units and firms, to understand the project performance in real time, and to establish dynamic tracking review and response measures to improve the overall project satisfaction.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅶ 第1章 緒論 1 1.1. 研究背景與動機 1 1.2. 研究目的 2 1.3. 研究範圍 3 第2章 文獻探討 5 2.1. 工程專案績效演進 5 2.2. 資料探勘技術於專案績效之應用 9 2.3. 建立影響工程績效因子 12 第3章 研究方法 15 3.1. 研究流程 15 3.2. 模糊德爾菲法 17 3.3. 資料探勘技術與關聯規則 21 3.4. 類神經網路 25 第4章 模型建構 30 4.1. 影響建築工程績效評估因子定義 30 4.2. 模糊德爾菲結果分析 32 4.3. 關聯規則參數設定 38 4.4. 類神經網路參數設定 40 第5章 結果和驗證 46 5.1. 案例背景說明及分析 46 5.2. 關聯規則結果分析 50 5.3. 類神經網路結果分析 55 第6章 成果討論 72 6.1. 關聯規則結果討論與應用 72 6.2. 類神經網路預測模型結果討論與應用 76 第7章 結論與建議 86 7.1. 結論 86 7.2. 建議 89 參考文獻 91 附錄 105

    英文部分
    1.Acharya,A.,Singh,S.K.,Pereira,V.,and Singh,P.(2018). Big data, knowledge cocreation and decision making in fashion industry, International Journal of Information Management, 42, 90-101.
    2.Adeli, H., & Wu, M. (1998). Regularization neural network for construction cost estimation. Journal of Construction Engineering and Management, 124(4), 18-24.
    3.Agrawal, R., Imieliński, T. & Swami, A. (1993). Mining association rules between sets of items in large databases. In ACM SIGMOD int’l conf. on management of data, 207-216, Washington D. C.
    4.Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Mining Association Rules in Large Databases, Proceedings of the 20th International Conference on Very Large Data-bases, Santiago, Chile , 487-499.
    5.Aguinis, H., Forcum, L.E., and Joo, H. (2013). Using market basket analysis in management research ,Journal of Management, 39(7), 1799-1824.
    6.Ahadzie, D. K., Proverbs, D. G., & Olomolaiye, P. O. (2008). Critical success criteria for mass house building projects in developing countries. International Journal of Project Management, 26(6), 675-687.
    7.Ahzahar ,N.,Karim, N.A., Hassan, S.H., and Eman, J. (2011). Astudy of Construction factors to building failures and defects in construction industry, The 2nd International Building Control Conference,249-255.
    8.Alaloul, W. S., Lieew, M. S., Zawawi, N. A. W., Mohammed, B. S. & Adamu, M. (2018). An Artificial neural networks (ANN) model for evaluating construction project performance based on coordination factors. Cogent Engineering, 5(1), 1507657.
    9.Aljassmi, H., Han, S., and Davis, S.(2014). Project pathogens network: New approach to analyzing construction –defects-generation mechanisms, Journal of Construction Engineering and Management, 140(1).
    10.Al-Momani, A. H. (1996). Construction cost prediction for public school buildings in Jordan. Construction Management and Economics, 14(4), 311-317.
    11.Alzahrani, J. I., & Emsley, M. W. (2013). The impact of contractors’ attributes on construction project success: a post construction evaluation. International Journal of Project Management, 31, 313-322.
    12.Ambrozic, T., and Turk, G. (2003) . Prediction of subsidence due to underground mining byarti.cialne ural networks, Computers & Geosciences, 29(5), 627-637.
    13.Amiri, M., Ardeshir, A., Zarandi, M.H.F., ang Soltanaghaei, E. (2016). Pattern extraction for high-risk accidents in the construction industry :A data-mining approach ,International Journal of Injury Control and Safety Promotion, 23(3), 264-276.
    14.Aretoulis, G. N., Angelides, D.C., Kalfakakou, G.P., Fotiadis, G.S., & Anastasiadis, K.I. (2006). A prototype system for the prediction of final cost in construction projects. International Journal of Operational Research, Special Issue, 6(3), 423-432.
    15.Aretoulis, G. N. (2019). Neural network models for actual cost prediction in Greek public highway projects. International Journal of Project Organisation and Management, 11(1), 41-64.
    16.Armaghani, D. J., Mohamad, E. T., Narayanasamy, M.S., Narita, N., & Yagiz, S. (2017). Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunnelling and Underground Space Technology, 63, 29-43.
    17.Baccarini, D. (1999). The logical framework method for defining project success. Project Manage Journal, 30(4), 25-32.
    18.Bagaya, O., & Song, J. (2016). Empirical study of factors influencing schedule delays of public construction projects in Burkina Faso. Journal of Management in Engineering, 32(5), 05016014.
    19.Barraaza, G. A., Back, W. E., & Mata, F. (2000). Probabilistic monitoring of project performance using SS-curves. Journal of Construction Engineering and Management, 126 (2), 142-148.
    20.Bassioni, H., Price, A., & Hassan, T. (2004). Performance measurement in construction. Journal of Management in Engineering, 20(2), 42-50.
    21.Berry, MJA., & Linoff, G. (1997). Data Mining Technique for Marketing , Sale, and Customer Support. Wiley Computer publishing.
    22.Bryde, D. J., & Wright, G. H. (2007). Project management priorities and the link with performance management systems. Project Manage Journal, 38(4), 5-11.
    23.Berman, J. J. (2013). Principles of Big Data: Preparing, Sharing and Analyzing Complex Information, 217-227.
    24.Chan, A. P. C., & Scott, D., & Chan, A. P. L. (2004). Factors affecting the success of a construction project. Journal of Construction Engineering and Management, 130(1), 153-155.
    25.Chen, C.H. (2001). NDT: Role of Artificial Intelligence and Neural Networks. Encyclopedia of Materials: Science and Technology [Second Edition], 5994-5996.
    26.Chen, W. T., & Huang, Y. H. (2006). Approximately predicting the cost and duration of school reconstruction projects in Taiwan. Construction Management and Economics, 24(12), 1231-1239.
    27.Chen, M., Han,j., & Yu, P. S. (1996). Data mining :an overview from a database perspective ,IEEE Transaction on Knowledge and Data Engineering, 8(6), 866-883.
    28.Cheng, C. W., Lin, C. C., and Leu, S. S. (2010). Use of association rules to explore cause-effect relationships in occupational accidents in the Taiwan construction industry ,Safety Science, 48(4), 436-444.
    29.Cheng, Y. Yu., W. D., and Li, Q. (2015). GA-based multi-level association rule mining approach for defect analtysis in the construction industry, Automation in Construction, 51,78-91.
    30.Chou, J. S., Cheng, M. Y., and Wu, Y. W. (2013). Improving classification accuracy of project dispute resolution using hybrid artificial intelligence and support vector machine models, Expert Systems with Applications, 40(6), 2263-2274.
    31.Chou, J. S., Hsu, S. C., Lin, C. W., and Chang, Y. C. (2016). Classifying influential for project informarion to discover rule sets for project disputes and possible resolutions, International Journal of Project Management, 34(8), 1706-1716.
    32.Chua DKH. kog YC, Loh PK. (1999). Critical success factors for different project objectives. Journal of Construction Engineering and Management, 125(3), 142-50.
    33.Coenen, F., Goulbourne, G., and Leng, P. (2004). Tree structures for mining association rules, Data Mining and Knowledge Discovery, 8, 25-51.
    34.Cohen, E., Datar, M., Fujiwara, S., Gionis, A., Indyk, P., Motwani, R., Ullman, J. D., and Yang, C. (2001). Finding interesting association without support pruning, IEEE Transations on Knowledge and Data Engineering, 13(1), 64-78.
    35.Cristóbal, J. R. S. (2017). The S-curve envelope as a tool for monitoring and control of projects. Procedia Computer Science, 121, 756-761.
    36.Dalkey, G. B. (1969). The Delphi method: an experimental study of group opinion, Rand Corp, Research Paper RM-5888-PR.
    37.Doloi, H., Sawhney, A., Iyer, K. C., & Rentala, S. (2012). Analysing factors affecting delays in Indian construction projects. International Journal of Project Management, 30(4), 479-489.
    38.Enshassi A., Mohamed, S., & Abushaban, S. (2008). Factors affecting the performance of construction projects in the Gaza strip. Journal of Civil Engineering and Management, 15(3), 269-280.
    39.Faridi, A., & El-Sayegh, S. (2006). Significant factors causing delay in the UAE construction industry. Construction Management and Economics, 24(11), 1167-1176.
    40.Flanagan, R., Lu, W., Shen, L., & Jewell, C. (2006). Competitiveness in construction: a critical review of research. Construction Management and Economics, 25(9), 989-1000.
    41.Fragkakis, N., Lambropoulos, S., & Pantouvakis, J-P. (2010). A cost estimate method for bridge superstructures using regression analysis and bootstrap. Organization, Technology & Management in Construction: An International Journal, 2(2), 182-190.
    42.Gudiene, N.; Banaitis, A.; Podvezko, V., & Banaitiene, N. (2014). Identification and evaluation of the critical success factors for construction projects in Lithuania: AHP approach. Journal of Civil Engineering and Management, 20(3), 350-359.
    43.Gunduz, M., & Yahya, A. M. A. (2018). Analysis of project success factors in construction industry. Technological and Economic Development of Economy, 24(1), 67-80.
    44.Hajdu, M. & Bokor, O. (2016). Sensitivity analysis in PERT networks: Does activity duration distribution matter? Automation in Construction, 65, 1-8.
    45.Han, J., Kamber, M. and Pei, J. (2012). Data Mining: The Morgan Kaufmann Series in Data Management Systems. [Third Edition], 585-631.
    46.Haponava, T., & Al-jibouri, S. (2012). Proposed system for measuring project performance using process-based key performance Indicators. Journal of Management in Engineering, 28(2), 140-149.
    47.Hardie, M., & Saha, S. (2012). Builders' perceptions of lowest cost procurement and its impact on quality. The Australasian Journal of Construction Economics and Building, 9(1), 1-7.
    48.Ha, S. Cho and D. MacLachlan. (2005). Response models based on bagging neural networks, Journal of Interactive Marketing, 19(1), 17-30.
    49.Hola, B., & Schabowicz, K. (2010). Estimation of earthworks execution time cost by means of artificial neural networks. Automation in Construction, 19(5), 570-579.
    50.Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer Feed Forward Networks are Universal Approximates Neural Networks, 2(5), 359-366.
    51.Hozor, B. D., Okoroh, M. I., Egbu, C. E., and Archicentre. (2004). Understanding residential house defects in Australia from the State of Victoria, Building and Environment, 39(3), 327-337.
    52.Huang J., Koopialipoor, M., & Armaghani, D. J. (2020). A combination of fuzzy Delphi method and hybrid ANN based systems to forecast ground vibration resulting from blasting. Scientific Reports, 10, 19397.
    53.Huang, W., Xu, B., Chan-Hilton, A. (2004). Forecasting fiows in apalachicola river using neural networks , Hydrological Processes, 18(13), 2545-2564.
    54.Ibbs, W., Nguyen, L. D., & Simonian, L. (2011). Concurrent delays and apportionment of damages. Journal of Construction Engineering and Management, 137(2), 119-126.
    55.Ishikawa, A., Amagasa, T., Tamizawa, G., Totsuta, R. & Mieno, H. (1993). The Max-Min Delphi Method and Fuzzy Delphi Method Via Fuzzy Integration, Fuzzy Sets and Systems 55, 241-253.
    56.Jha, K. N., & Iyer, K. C. (2007). Commitment, coordination, competence and the iron triangle. International Journal of Project Management, 25(5), 527-540.
    57.Juan, Y. K., Hsu, Y. H., & Xie, X. (2017). Identifying customer behavioral factors and price premiums of green building purchasing. Industrial Marketing Management, 64, 36-43.
    58.Kamsu-Foguem, B., Rigal, F., & Mauget, F. (2013). Mining association rules for the quality improvement of the production process. Expert Systems with Applications, 40(4), 1034-1045.
    59.Kanas, Neural network linear forecasts for stock returns . (2001). International Journal of Finance & Economics, 6(3), 245-254.
    60.Kaufmann, A., & Gupta, M. M. (1988). Fuzzy Mathematical Models in Engineering and Management Science, Amsterdam: North-Holland.
    61.Kog, Y. C., & Loh, P. K. (2012). Critical success factors for different components of construction projects. Journal of Construction Engineering and Management, 138(4), 520-528.
    62.Kouris ,I.N.,Makris , C.H., and Tsakalidis, A.K. (2005). Using information retrieval techniques for supporting data mining , Data & Knowledge Engineering, 52, 353-383.
    63.Krishnan, K. (2013). Data Warehousing in the Age of Big Data: MK Series on Business Intelligence, 3-14.
    64.Kuo, Y. F., & Chen, P. C. (2008). Constructing performance appraisal indicators for mobility of the service industries using Fuzzy Delphi Method. Expert Systems with Applications, 35(4), 1930-1939.
    65.Larose, D. T. (2005). Discovering Knowledge in Data, John Wiley & Sons, Inc., New Jersey.
    66.Lee ,S., Han, S., and Hyun, C. (2016). Analysis of causality between defect causes using association rule mining ,International Journal of Civil, Environmental, Structural, Construction and Architectural Engeering, 10(5), 659-662.
    67.Leung, M. Y., Ng, S. T., & Cheung, S. O. (2004). Measuring construction project participant satisfaction. Construction Management and Economics, 22(3), 319-331.
    68.Li, D., Koopialipoor, M., & Armaghani, D. J. (2021). A combination of Fuzzy Delphi Method and ANN-based Models to investigate factors of flyrock induced by mine blasting. Natural Resources Research (article in press).
    69.Li, H., Li, X. Y., Luo, X. C., and Siebert, J. (2017). Investigation of the causality patterns of non-helmet use behavior of construction workers , Automation in Construction, 80, 95-103.
    70.Li, L. (2013). The future of academic libraries in the digital age. In Trends, Discovery, and People in the Digital Age, 253-268.
    71.Ling F. Y. Y., Liu, M. (2004). Using neural network to predict performance of design-build projects in Singapore. Building and Environments, 39(10), 1263-1274.
    72.Lin, G., Shen, G., Sun, M., & Kelly, J. (2011). Identification of key performance indicators for measuring the performance of value management studies in construction. Journal of Construction Engineering and Management, 137(9), 698-706.
    73.Liu, B., Hsu, W., Chen, S., & Ma. Y. (2000). Analyzing the subjective interestingness of association rules. IEEE Intelligent Systems and their Applications, 15(5), 47-55.
    74.Loshin, D. (2013). Business Intelligence: The Savvy Manager's Guide. MK Series on Business Intelligence. [Second Edition], 271-286.
    75.Mansingh, G., Osei-Bryson, K. M., & Reichgelt, H. (2011). Using ontologies to facilitate post-processing of association rules by domain experts. Information Science, 181(3), 419-434.
    76.Mitkus, S., & Trinkūnienė, E. (2008). Reasoned decisions in construction contracts evaluation. Technological and Economic Development of Economy, 14(3), 402-416.
    77.Mohamad, E. T., Armaghani, D. J., Momeni, E., & Abad, S. V. A. N. K. (2014). Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bulletin of Engineering Geology and the Environment, 74, 745-757.
    78.Murray, T. J., Pipino, L. L., & van Gigch, J. P. (1985). A pilot study of fuzzy set modification of Delphi. Human Systems Management, 5(1), 76-80.
    79.McCue, C. (2007). Data Mining and Predictive Analysis. Data Mining and Predictive Analysis.
    80.National Development Council (NDC) (2020). Overview of the project implementation of Ministry of Education. Accessed August 5, 2020.
    81.Nassar, N., & AbouRizk, S. (2014). Practical application for integrated performance measurement of construction projects. Journal of Management in Engineering, 30(6), 04014027.
    82.Olafsson S., Li, X., & Wu, S. (2008). Operations research and data mining. European Journal of Operational Research, 187(3), 1429-1448.
    83.Patanakul, P., Kwak, Y.H., Zwikael, O., & Liu, M. (2016). What impacts the performance of large-scale government projects? International Journal of Project Management, 34(3), 452-466.
    84.Perng, Y. H., Juan, Y. K., & Chien, S. F. (2006). Exploring the bidding situation for economically most advantageous tender projects using a bidding game. Journal of Construction Engineering and Management, 132(10), 1037-1042.
    85.Petroutsatou, K., Georgopoulos, E., Lambropoulos, S., & Pantouvakis, J. (2011). Early cost estimating of road tunnel construction using neural networks. Journal of Construction Engineering and Management, 138(6), 679-687.
    86.Public Construction Commission (2020). Construction Management Information System. Accessed August 5, 2020.
    87.Quinn, P., & Quinn, L. (2018). Big genetic data and its big data protection challenges. Computer Law and Security Review, 34(5), 1000-1018.
    88.Rozenes, S., Vitner, G., & Spraggett, S. (2004). MPCS: Multidimensional project control system. International Journal of Project Management, 22(2), 109-118.
    89.Sambasivan, M., & Soon, Y. (2007). Causes and effects of delays in Malaysian construction industry. International Journal of Project Management, 25, 517-526.
    90.Santoso, D. S., & Gallage, P. G. M. P. (2019). Critical factors affecting the performance of large construction projects in developing countries: A case study of Sri Lanka. Journal of Engineering, Design and Technology, 18(3), 531-556.
    91.Sanvido, V., Grobler, F., Parfitt, K., Guvenis, M., & Coyle, M. (1992). Critical success factors for construction projects. Journal of Construction Engineering and Management, 118(1), 94-111.
    92.Shobha, G., & Rangaswamy, S. (2018). Chapter 8 - Machine Learning. Handbook of Statistics.
    93.Shrestha, P.P., & Zeleke, H. (2018). Effect of change orders on cost and schedule overruns of school building renovation projects. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 10(4), 04518018.
    94.Sullivan, J., El Asmar, M., Chalhoub, J., & Obeid, H. (2017). Two decades of performance comparisons for design-build, construction manager at risk, and design-bid-build: quantitative analysis of the state of knowledge on project cost, schedule, and quality. Journal of Construction Engineering and Management, 143(6), 04017009.
    95.Sztobryn. (2003). Forecast of storm surge by mean of artificial neural network, Journal of Sea Research, 49(4), 317-322.
    96.Tabish, S. Z., & Jha, K. N. (2012). Success traits for a construction project. Journal of Construction Engineering and Management, 138(10), 1131-1138.
    97.Tabesh, P., Mousavidin, E., & Hasani, S. (2019). Implementing big data strategies: A managerial perspective. Business Horizons, 62(3), 347-358.
    98.Talia, D., Trunfio, P. and Marozzo, F. (2016). Data Analysis in the Cloud: Computer Science Reviews and Trends, 1-25.
    99.Telikani, A., Gandomi, A. H., & Shahbahrami, A. (2020). A survey of evolutionary computation for association rule mining. Information Science, 524, 318-352.
    100.Ting, C. K., Liaw, R. T., Wang, T. C., & Hong, T. P. (2018). Mining fuzzy association rules using a memetic algorithm based on structure representation. Memetic Computing, 10, 15-28.
    101.Vellido, P. J. G. Lisboa and J. Vaughan, Neural network in business a survey of applications. (1999). Journal of Expert System with Application, 17, 51-70.
    102.Wang, Y. R., Yu, C. Y., & Chan, H. H. (2012). Predicting construction cost and schedule success using artificial neural networks ensemble and support vector machines classification models. International Journal of Project Management, 30(4), 470-478.
    103.Wang, K., Cai, Z., Zhu, P., Cui, P., Zhu, H., & Li, Y. (2018). Adopting data interpretation on mining fine-grained near-repeat patterns in crimes. Journal of Forensic and Legal Medicine, 55, 76-86.
    104.Wei, W. L., & Chang, W. C. (2008). Analytic network process-based model for selecting an optimal product design solution with zero-one goal programming. Journal of Engineering Design, 19(1), 15-44.
    105.Wittek, P. (2014). Quantum Machine Learning: What Quantum Computing Means to Data Mining.
    106.Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2017). Chapter 13 - Moving on: applications and beyond. In Data Mining (Fourth Edition), 503-532.
    107.Xiao,F.,and Fan,C. (2014). Data mining in building automation system for improving building operational performance, Energy and Buildings, 75, 109-118.
    108.Yang, J., Shen, G. Q., Drew, D. S., & Ho, M. (2010). Critical success factors for stakeholder management: construction practitioners’ perspectives. Journal of Construction Engineering and Management, 136(7), 778-786.
    109.Yu, Z.,Haghighat,F.,Fung,C.M.,and Zhou,L. (2012). A novel methodology for knowledge dis-covery through mining associations between building operational data, Energy and Buildings, 47, 430-440.
    110.Zavadskas, E. K., Vilutiene, T., Turskis, Z., & Saparauskas, J. (2014). Multi-criteria analysis of Projects' performance in construction. Archives of Civil and Mechanical Engineering, 14(1), 114-121.
    111.Zhang, G. & M.Y. Hu. (1988). Neural Network Forcasting of the British Pound/ US Dollar Exchange Rate, Omega Int. Journal Magazine Science, 26(4), 495-506.

    中文部分
    1. 行政院公共工程委員會網站 http://www.pcc.gov.tw 。
    2. 國家發展委員會 https://www.ndc.gov.tw/ 。
    3. 王裕仁 (2011)。應用人工智慧於專案先期預測專案績效之研究-以台灣建築專案為例,行政院國家科學委員會專題研究計畫成果報告。
    4. 王凱利 (2017)。公共工程標案多次流廢標問題之探討-以公告金額新台幣100萬至5000萬之公共工程查核標案為例,國立臺灣海洋大學河海工程學系碩士論文。
    5. 李宗霖 (2016)。以類神經網路模式探討住宅房價影響因子之研究,國立交通大學工學院工程技術與管理學程碩士論文。
    6. 吳繼雄 (2002)。工程設計顧問評選作業之研究,中華大學營建管理研究所碩士論文。
    7. 邱松山 (2012)。以類神經網路與支援向量機預測公共工程決標金額之研究,國立高雄應用科技大學土木工程與防災科技研究所碩士論文。
    8. 邵繼堯 (2010)。應用人工智慧於預測橋梁工程決標金額之研究,國立臺灣科技大學營建工程研究所碩士論文。
    9. 巫啟台 (2002)。文件之關聯資訊萃取及其概念圖自動建構,國立成功大學資訊工程學系碩士論文。
    10. 林明宏、張順孔、李德河、方世杰 (2004)。類神經網路應用在阿里山公路崩壞潛能評估之研究,全國災害危機處理學術研討會論文集,2-102-2-109。
    11. 林哲甫 (2015)。以適應性類神經模糊推論系統預測建築工程專案績效之研究,國立高雄應用科技大學土木工程與防災科技研究所碩士論文。
    12. 林宛宣 (2019)。應用資料探勘於臺北市住宅竊盜環境特性之關聯研究,國立臺灣科技大學建築研究所碩士論文。
    13. 范慶龍 (2018)。公共工程施工查核缺失與查核成績之關係,國立高雄科技大學工學院工程科技研究所博士論文。
    14. 陳儒賢 (2003)。類神經網路於水文系統之研究,國立臺灣大學土木研究所博士論文。
    15. 陳憲宗 (2006)。支撐向量機及模糊推理模式應用於洪水水位之即時機率預報,國立成功大學水利及海洋學系博士論文。
    16. 陳木村、陳春盛 (2008)。建築工地進度與成本執行績效之探討-桃竹苗區,國立交通大學工學院工程技術與管理學程期刊。
    17. 陳建良、王孔政、吳政俊、賴宜伶等 (2008)。類神經網路於農業產銷預測模式之應用,先進工程學刊。
    18. 陳芑瑋 (2021)。應用類神經網路與關聯規則於住宅屬性與銷售率之關聯性研究,國立臺灣科技大學建築研究所碩士論文。
    19. 高力山、張斐章 (2011)。應用類神經網路推估區域地下水中砷污染之驗究,國立臺灣大學生物環境系統工程所 農業工程學報第57卷第3期。
    20. 郭信宏 (2008)。應用資料探勘技術於面板檢測實證研究,國立中央大學,碩士論文。
    21. 郭玉婷 (2016)。台灣建築工程專案先期規劃與執行績效之探討,國立高雄應用科技大學土木工程與防災科技研究所碩士論文。
    22. 徐村和 (1998)。模糊德爾菲層級分析法,模糊系統學刊,第四卷,pp. 59-72。
    23. 張斐章、張麗秋 (2015)。類神經網路導論:原理與應用(第二版),滄海出版。
    24. 楊駕人 (2007)。國防預算最適化資源分配模式與應用,國立交通大學管理學院 科技管理研究所博士論文。
    25. 葉怡成 (2002)。類神經網路模式應用與實作,儒林書局。
    26. 鄭滄濱 (1996)。軟體組織提升人員能力之成熟度模糊評估模式,碩士論文,國立台灣科技大學,台北。
    27. 衛萬里、張文智 (2015)。應用模糊德爾菲與分析網路程序法選擇最佳產品設計方案之研究,設計學報第10卷第3期。
    28. 賴碧瑩 (2007)。應用類神經網路於電腦輔助大量估價之研究,住宅學報第十六卷第二期。
    29. 蔡仁智、蔡政翰 (2007)。資料探勘應用於台灣海岸危險波浪發生之研究,第 29 屆海洋工程研討會論文集。
    30. 戴大為 (2017)。公共工程因停工造成工期展延及成本增加之研究-以工地現場發現文化遺址為例,國立臺灣大學機械工程研究所碩士論文。
    31. 簡禎富、許嘉裕 (2014)。資料挖礦與大數據分析,前程文化,新北市。
    32. 謝宗憲 (2021)。應用類神經網路與關聯規則探討室內格局與銷售率之關係,國立臺灣科技大學建築研究所碩士論文。
    33. 羅文泰 (2012)。國立大專院校建築工程先期規劃之探討,國立交通大學土木工程研究所碩士論文。

    無法下載圖示 全文公開日期 2024/12/15 (校內網路)
    全文公開日期 2026/12/15 (校外網路)
    全文公開日期 2026/12/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE