簡易檢索 / 詳目顯示

研究生: 曾譯萱
Yi-Hsuan Tseng
論文名稱: 寬頻馬赫詹德之方向耦合器的相位討論
Phase Study in Broadband Mach-Zehnder based Directional Coupler
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 徐世祥
Shih-Hsiang Hsu
范慶麟
Ching-Lin Fan
莊敏宏
Miin-Horng Juang
林保宏
Pao-Hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 94
中文關鍵詞: 馬赫詹德干涉儀方向耦合器波長解多工器矽光子寬頻馬赫詹德方向耦合器絕緣層上覆矽
外文關鍵詞: Mach-Zehnder interferometer, Directional Coupler, WDM, Silicon photonics, broadband Mach-Zehnder directional coupler, Silicon on insulator
相關次數: 點閱:425下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在矽波導的波長分波多工器中,我們設計以一對四串接的馬赫詹德干涉儀為主,其體積小而且容易積體化形成光纖通訊系統。由於方向耦合器(Directional Coupler, DC)在非中心之波長,其分光比會偏離,造成波長分波多工效果出現串擾(Crosstalk)的落差,因此多工器是由不同分光比的馬赫詹德方向耦合器和相位延遲組成。其中馬赫詹德耦合器相位在分光比對波長不敏感中,扮演非常重要的角色,因此我們將深入討論馬赫詹德方向耦合之相位及其改善的方法,最後將應用在分波複用器中。
    本論文設計與製做出具有平頂帶寬的馬赫詹德延遲干涉儀,我們以分光比分別為0.5、0.29和0.08之寬頻馬赫詹德方向耦合器(Mach-Zehnder Directional Coupler, MZDC)組成串接型波長濾波器(Cascaded Wavelength Filter),並且深入探討MZDC其耦合(Coupled)與非耦合(Decoupled)區相位所造成的影響,避免因彎曲相位導致寬頻分光比的異常。


    In the silicon based wavelength division multiplexer (WDM) filter, a cascaded Mach-Zehnder interferometer (MZI) with one input and 4 outputs will demonstrate a small footprint and ease to be integrated to construct a fiber-optic communication system. Since the directional coupler (DC) splitting ratio at the central wavelength will deviate from other wavelength range and cause a serious crosstalk in WDM, the MZI based WDM filter will be formed through Mach-Zehnder directional coupler (MZDC) with different splitting ratios and phases. The MZDC power divider is wavelength independence after the appropriate phase arrangement. Therefore, the related phase and its improvement will be further discussed and applied in the WDM filter.
    We designed and fabricated a Mach-Zehnder based delay interferometer with flat top passband. A broadband MZDC with splitting ratios of 0.5, 0.29 and 0.08 will be utilized to form a cascaded wavelength filter. The effects from the phase of the coupled and uncoupled regions of the MZDC is going to be further explored to avoid the broadband splitting ratio deviation.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 導論 1 1.1 簡介 1 1.2 研究動機 1 1.3 論文架構 3 第二章 理論與特性介紹 4 2.1 波導結構 4 2.2 單、多模條件 6 2.3 雙折射效應(Birefringence Effect) 8 2.4 波導傳輸損耗 10 2.5 分波多工 19 2.6 解多工器之參數定義 21 第三章 矽波導元件設計與理論 23 3.1 方向耦合器基本理論 23 3.2 超模 27 3.3 馬赫詹德方向耦合器 29 3.3.1 馬赫詹德方向耦合器理論 29 3.3.2 馬赫詹德方向耦合器設計 32 3.4 方向耦合器與馬赫詹德方向耦合器之模擬 37 3.4.1 方向耦合器模擬 37 3.4.2 馬赫詹德方向耦合器模擬 39 第四章 馬赫詹德延遲儀之應用 45 4.1馬赫詹德干涉儀理論 45 4.2理想型馬赫詹德延遲干涉儀 46 4.3非理想型馬赫詹德延遲干涉儀 48 4.4 晶格濾波器設計 49 4.5 串接型濾波器設計 52 4.6 馬赫詹德方向耦合器應用於串接型濾波器設計 57 第五章 量測結果與分析 67 5.1 量測前的掃描式電子顯微鏡SEM照片 67 5.2 寬頻耦合器量測 69 5.3 寬頻波長濾波器量測 73 第六章 結論與未來展望 75 6.1 結論 75 6.2 未來展望 75 簡寫表 76 參考文獻 77

    1. B. Jalai, and S. Fathpour, “Silicon Photonics,” Journal of Lightwave Tecjnology, vol. 24, no. 12, pp. 4600-4615, 2006.
    2. D. Bischoff, “Wavelength multiplexing: WDM and DWDM systems,” pp. 1-27, 2009.
    3. C. Systems, “Introduction to DWDM technology,” Cisco Systems, Inc., San Jose, USA, 2001.
    4. D. Feng, W. Qian, H. Liang, C.-C. Kung, J. Fong, B. J. Luff and M. Asghari, “Fabrication insensitive Echelle grating in silicon-on-insulator platform,” IEEE Photonics Technology Letters, vol. 23, no. 5, pp. 284-286, 2011.
    5. Md. Surat-E-Mostafa, Md. Muksudul Alam, Md. Al Faisal Reza, “Crosstalk effect in a transmission line for dense wavelength division multiplexing (DWDM) system,” International Journal of Scientific & Technology Research, vol. 2, pp. 237-240, 2013.
    6. F. Horst , W. M. J. Green , S. Assefa , S. M. Shank , Y. A. Vlasov, and B. J. Offrein” Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing” Optics Express 11652, Vol. 21, No. 10,2013.
    7. A. Takagi, K. Jinguji and M. Kawachi, “Broadband silica-based optical waveguide coupler with asymmetric structure,” Electronics Letters, Vol. 26, No. 2, pp. 132-133, 1990.
    8. A. Takagi, K. Jinguji and M. Kawachi, “Wavelength characteristics of (2 × 2) optical channel-type directional couplers with symmetric or nonsymmetric coupling structures,” Journal of Lightwave Technology, Vol. 10, No. 6, pp. 735-746, 1992.
    9. Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Optics Express, Vol. 23, No. 3, pp. 3795-3808, 2015.
    10. S. Tseng, “Robust coupled-waveguide devices using shortcuts to adiabaticity,” Optics Letters, Vol. 39, No. 23, pp. 6600-6603, 2014.
    11. X. Chen, R. Wen, and S. Tseng, “Analysis of optical directional couplers using shortcuts to adiabaticity,” Optics Express, Vol. 24, No. 16, pp. 18322-18331, 2016.
    12. C. R. Doerr, M. Cappuzzo, E. Chen, A.Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar lightwave circuit 2 × 2 coupler to desensitize it to wavelength, polarization, and fabrication changes,” IEEE Photonics Technology Letters, Vol. 17, No. 6, pp. 1211-1213, 2005.
    13. H. Morino, T. Maruyama and K. Iiyama, “Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler,” Journal of Lightwave Technology, Vol. 32, No. 12, pp. 2188-2192, 2014.
    14. S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers,” Optics Letters, Vol. 41, No. 4, pp. 836-839, 2016.
    15. Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics Technology Letters, Vol. 8, No. 3, pp. 7101408 (2016).
    16. R. A. Soref, J. Schmidtchen and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE Journal of Quantum Electronics, Vol. 27, No. 8, pp. 1971-1974 , 1991.
    17. S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent Silicon-on-Insulator waveguides with small cross section,” Journal of Lightwave Technology, Vol. 23, No. 6, pp. 2103-2111, 2005.
    18. T. Aalto, Microphotonic silicon waveguide components: VTT Technical Research Centre of Finland, 2004.
    19. K. W. Ang, G.Q. Lo , “Avalanche photodiodes: Si charge avalanche enhances APD sensitivity beyond 100 GHz,” Laser Focus World, Vol. 46, No. 8, pp. 41, 2010.
    20. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J.V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D.V. Thourhout, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technology Letters, Vol. 16, No. 5, pp. 1328-1330, 2004.
    21. Y. Hbino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, No. 6, pp. 1090-1101, 2002.
    22. A. Sakai, G. Hara, and T. Baba, “Sharply bent optical waveguide on silicon-on-insulator substrate,” Proceedings of SPIE, Vol. 4283, pp. 610-618, 2001.
    23. E. A. J. Marcatili, “Bends in optical dielectric guides,” The Bell System Technical Journal, pp. 2103-2132, 1969.
    24. M. Heiblum, and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE Journal of Quantum Electronics, Vol. QE-11, No. 2, pp. 75-83, 1975.
    25. Y. A. Vlasov, and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Optics Express, Vol. 12, No. 8, pp. 1622-1631, 2004.
    26. V. Subramaniam, G. N. D. Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” Journal of Lightwave Technology, Vol. 15, No. 6, pp. 990-997, 1997.
    27. K. K. Lee, D. R. Lim, H.C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Applied Physics Letters, Vol. 77, No. 11, pp. 1617-1619, 2000.
    28. D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell System Technical Journal, Vol. 48, No. 10, pp. 3187-3215, 1969.
    29. F. P. Payne, J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Optical and Quantum Electronics, Vol. 26, pp. 977-986, 1994.
    30. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides," IEEE Photonics Technology Letters, Vol. 16, pp. 1661-1663, 2004.
    31. S. Robinson, S. Jasmine and R. Pavithra, “Investigation on hybrid WDM (DWDM+CWDM) free space optical communication system,” ICTACT Journal on Communication Technology, vol. 06, no. 04, pp. 1187-1192, 1998.
    32. H. Takahashi, "Wavelength multiplexer/demultiplexer (MUX/DEMUX in WDM)," in Encyclopedic handbook of integrated optics, Boca Raton, Taylor & Francis Group, 2006, pp. 483-486.
    33. International Telecommunication Union, "ITU-T G.671, Series G: Transmission systems and media, digital systems and networks, Transmission characteristics of optical components and subsystems," ITU, 2012.
    34. S. V. Kartalopoulos, “Introduction to DWDM Technology,” Murray Hill: John Wiley & Sons Inc., 2000.
    35. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for intergrated optics,” The Bell System Technical Journal, pp. 2071-2102, 1969.
    36. Q. Fang, J. F. Song. T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo and D. L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Phonics Technology Letters, vol. 23, no. 8, pp. 525-527, 2011.
    37. H. Yamada, T. Chu, S. Ishida and Y. Arakawa,, “Si Photonics Wire Waveguide Devices,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1371-1379, 2006.
    38. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang and X. Jiang, "FSR-free add–drop filter based on silicon grating-assisted contradirectional couplers", Optics Letters, vol. 38, no. 1, p. 1, 2012.
    39. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. Fard, J. Flueckiger, N. Jaeger and L. Chrostowski, "Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon", Optics Express, vol. 21, no. 6, p. 6733, 2013.
    40. Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay and Y. Su, "High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations", Optics Express, vol. 24, no. 6, p. 6586, 2016.
    41. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering), Oxford, 2006.
    42. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu and J. Yu, "High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization", Optics Express, vol. 21, no. 4, p. 4116, 2013.
    43. S. H. Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” Journal of the Optical Society America B, Vol. 27, No. 5, pp. 941-947, 2010.
    44. B. E. Little, and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using mach-zehnder structures,” IEEE Photonics Technology Letters, Vol. 9, No. 12, pp. 1607-1609, 1997.
    45. M. Watts, J. Sun, C. DeRose, D. Trotter, R. Young and G. Nielson, "Adiabatic thermo-optic Mach–Zehnder switch", Optics Letters, vol. 38, no. 5, p. 733, 2013.
    46. C. Sturm, D. Tanese, H. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech and J. Bloch, "All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer", Nature Communications, vol. 5, no. 1, 2014.
    47. R. März, “Integrated Optics, Design and Modelling”, Artech House Publishers, Boston-London, 1995.
    48. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (John Wiley &Sons Inc.), 2001.

    QR CODE