簡易檢索 / 詳目顯示

研究生: 陳竑伸
Hong-Shen Chen
論文名稱: 以基因演算法設計串接式馬赫詹德方向耦合器之探討與應用
Cascaded Mach-Zehnder Directional Coupler Design Using Genetic Algorithm and Its Applications
指導教授: 徐世祥
Shih-Hsiang Hsu
李志堅
Chih-Chien Lee
口試委員: 李三良
San-Liang Lee
張勝良
Sheng-Lyang Jang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 75
中文關鍵詞: 馬赫詹德干涉器馬赫詹德方向耦合器基因演算法
外文關鍵詞: Mach-Zehnder Interferometer, Mach-Zehnder Directional Coupler, Genetic Algorithm
相關次數: 點閱:571下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當前對於波長不敏感的元件需求日益增大,無論是在光纖通訊,或是醫學光學感測上,本論文設計與製作出在SOI平台上具有160-nm頻寬的串接式馬赫詹德方向耦合器(Cascaded Mach-Zehnder Directional Coupler, CMZDC),此乃於傳統MZDC (Mach-Zehnder Directional Coupler)的基礎架構下,進一步進行改良。本論文使用基因演算法(Genetic Algorithm)與串接多級馬赫詹德干涉器來進增加MZDC的工作頻寬,並提出關於相移器的改良,在設計上以不同寬度的波導來取代,藉以降低其元件大小,也使得光學設計與模擬上更加有效率。此元件也能夠設計出任意分光比,且其具有大頻寬、低損耗的優點。
    我們以馬赫詹德干涉儀做為基礎,結合CMZDC來應用於光纖通訊與醫學感測領域中:於光纖通訊400-Gb/s通訊的應用中,本論文設計以多個平頂寬帶的MZI串接的一對四波長分波多工器(Demultiplexer, DEMUX),以及應用於醫學感測的光學同調斷層掃描的掃頻式濾波器。
    在量測20-nm通道寬度的1x4平頂帶寬濾波器,除了一段晶格濾波器受製程誤差造成頻譜兩個通道失真外,其餘兩級晶格濾波器皆具有8-dB以下的串擾。


    The wavelength-independent components is in high demand in the optical communication and optical sensing. In this thesis the cascaded Mach-Zehnder directional coupler (CMZDC) is demonstrated with 160-nm bandwidth on the silicon-on-insulator (SOI) platform. The Genetic Algorithm is further utilized to enhance the operating wavelength range. The phase shifter is replaced by waveguides with two different widths to reduce device size and improve simulation efficiency. The CMZDC can be any splitting ratios, and owns the advantages of large bandwidth and low loss.
    The CMZDC based Mach-Zehnder interferometer can be taken as the demultiplexer for 400-Gb/s fiber optic communications and biosensing. In this thesis a 1x4 wavelength demultiplexer with flat-top passband is demonstrated. Moreover, the CMZDC is also applied to the swept source of optical coherence tomography (OCT) for higher axial resolution.
    A 1x4 flat-top passband demultiplexer with 20-nm channel spacing demonstrates the crosstalk lower than 8-dB except one output due to the process error.

    摘要 ABSTRACT 致謝 目錄 圖目錄 表目錄 第一章 導論 1.1 簡介 1.2 研究動機 1.3 論文架構 第二章 理論與特性介紹 2.1 單多模條件 2.2 方向耦合器基本理論 第三章 矽波導元件設計與理論 3.1 Coupled Mode Theory(CMT) 3.1.1 CMT理論 3.2.2 CMT計算與驗證 3.2 馬赫詹德方向耦合器 3.2.1 馬赫詹德方向耦合器理論 3.2.2 馬赫詹德方向耦合器設計 3.2.3 異寬相移器之設計 3.3 以基因演算法優化馬赫詹德方向耦合器 3.3.1基因演算法介紹 3.3.2基因演算法設計馬赫詹德方向耦合器 3.3.3模擬數據 3.3.4 多級馬赫詹德方向耦合器 第四章 馬赫詹德干涉儀之應用 4.1馬赫詹德干涉儀 4.1.1 馬赫詹德干涉儀原理 4.1.2 理想型馬赫詹德干涉儀 4.1.3 非理想型馬赫詹德干涉儀 4.2 平頂帶寬濾波器 4.2.1 晶格濾波器 4.2.2 串接型平頂帶寬濾波器原理 4.2.3 馬赫詹德方向耦合器應用於串接型濾波器設計 4.3 掃頻式濾波器 4.3.1 1對16解多工器 4.3.2 光學開關 4.3.3微環型共振器 第五章 量測結果與分析 5.1 量測前的掃描式電子顯微鏡SEM照片 5.2 TSRI製程元件量測結果 5.3 IMEC製程元件量測結果 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    [1] B. Jalai, and S. Fathpour, “Silicon Photonics,” Journal of Lightwave Tecjnology, vol. 24, no. 12, pp. 4600-4615, 2006.
    [2] G. Chen, J. Ong, T. Ang, S. Lim, C. Png and D. Tan, "Broadband Silicon-On-Insulator directional couplers using a combination of straight and curved waveguide sections" Scientific Reports, Vol. 7, 2017.
    [3] Zeqin Lu, Han Yun, Yun Wang, Zhitian Chen, Fan Zhang, Nicolas A. F. Jaeger, and Lukas Chrostowski ” Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Optics Express, pp. 3795-3808, Vol. 23, No. 3, 2015.
    [4] Po-Han Fu, Yi-Chou Tu, Ding-Wei Huang, ” Broadband optical waveguide couplers with arbitrary coupling ratios designed using a genetic algorithm,” Optics Express, pp. 30548-30561, Vol. 24, No. 26, 2016.
    [5] F. Horst , W. M. J. Green , S. Assefa , S. M. Shank , Y. A. Vlasov, and B. J. Offrein, ” Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Optics Express, pp.11652- 11658, Vol. 21, No. 10, 2013.
    [6] W. Drexler and J. G. Fujimoto: Optical coherence tomography: technology and applications, (Springer Science & Business Media), 2015.
    [7] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto,“Optical coherence tomography using a frequency-tunable optical source," Optics Letters, Vol. 22, No. 5, pp. 340–342, 1997.
    [8] R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Optics Express, Vol. 14, No. 8, pp. 3225–3237, 2006.
    [9] V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,”Electronics Letters, Vol. 48, No. 14, pp. 867–869, 2012.
    [10] C. Li, J. Song, J. Zhang, H. Zhang, S. Chen, M. Yu and G. Lo, "Silicon polarization independent microring resonator-based optical tunable filter circuit with fiber assembly," Optics Express, Vol. 19, No. 16, pp. 15429-15437, 2011.
    [11] T. Chu, N. Fujioka and M. Ishizaka, "Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators," Optics Express, Vol. 17, No. 16, pp. 14063-14068, 2009.
    [12] R. A. Soref , J. Schmidtchen and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE Journal of Quantum Electronics, Vol. 27, No. 8, pp. 1971-1974 , 1991.
    [13] S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent Silicon-on-Insulator waveguides with small cross section,” Journal of Lightwave Technology, Vol. 23, No. 6, pp. 2103-2111, 2005.
    [14] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for intergrated optics,” The Bell System Technical Journal, pp. 2071-2102, 1969.
    [15] Q. Fang, J. F. Song. T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo and D. L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Phonics Technology Letters, Vol. 23, No. 8, pp. 525-527, 2011.
    [16] H. Yamada, T. Chu, S. Ishida and Y. Arakawa,, “Si Photonics Wire Waveguide Devices,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, No. 6, pp. 1371-1379, 2006.
    [17] Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang and X. Jiang, "FSR-free add–drop filter based on silicon grating-assisted contradirectional couplers," Optics Letters, Vol. 38, No. 1, pp. 1-3, 2012.
    [18] W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. Fard, J. Flueckiger, N. Jaeger and L. Chrostowski, "Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon," Optics Express, Vol. 21, No. 6, pp. 6733-6738, 2013.
    [19] Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay and Y. Su, "High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations," Optics Express, Vol. 24, No. 6, pp. 6586-6593, 2016.
    [20] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering), Oxford, 2006.
    [21] W.Huang, “Coupled-mode theory for optical waveguides : an overview,” J.Opt.Soc.Am.A11, pp. 963–983, 1994.
    [22] S. H. Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” Journal of the Optical Society America B, Vol. 27, No. 5, pp. 941-947, 2010.
    [23] B. E. Little, and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using mach-zehnder structures,” IEEE Photonics Technology Letters, Vol. 9, No. 12, pp. 1607-1609, 1997.
    [24] J.H. Holland, “Genetic Algorithms,” Scientific American, pp. 66-72, 1992.
    [25] M. Watts, J. Sun, C. DeRose, D. Trotter, R. Young and G. Nielson, "Adiabatic thermo-optic Mach–Zehnder switch," Optics Letters, Vol. 38, No. 5, pp. 733-735, 2013.
    [26] C. Sturm, D. Tanese, H. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech and J. Bloch, "All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer," Nature Communications, Vol. 5, No. 1, 2014.
    [27] R. März ,“Integrated Optics, Design and Modelling,” Artech House Publishers, Boston-London, 1995.
    [28] C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (John Wiley & Sons Inc.), 2001.
    [29] F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen and F. X. Kärtner, "Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures, " 2007 Photonics in Switching, 2007.

    無法下載圖示 全文公開日期 2024/08/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE