簡易檢索 / 詳目顯示

研究生: Bulti Abdisa Kerayu
Bulti Abdisa Kerayu
論文名稱: 環狀大型架橋延伸紫質之合成、鑑定與化學感測器應用
Synthesis, Characterization and Ion Chemosensor of Macrocyclic Internally Bridged Expanded Porphyrins
指導教授: 江志強
Jyh-Chiang Jiang
洪政雄
Chen-Hsiung Hung
口試委員: 洪政雄
Chen-Hsiung Hung
江志強
Jyh-Chiang Jiang
陳錦地
Chin-Ti Chen
江明錫
Ming-Hsi Chiang
張家耀
Jia-Yaw Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 115
中文關鍵詞: AromaticityHexaphyrinsPorphyrinoidsMacrocyclesThiaporphyrinsMolecular sensor
外文關鍵詞: Aromaticity, Hexaphyrins, Porphyrinoids, Macrocycles, Thiaporphyrins, Molecular sensor
相關次數: 點閱:252下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
以o-dichlorophenyl為meso位置取代基之2,5-thienylene strapped [26]hexaphyrin (2) 的製備過程中分離出尚未發現的三環延伸紫質[18]thiaporphyrin[36]dithiaoctaphyrin[18]thiaporphyrin (3)。3是由2,5-thienylene所橋接的三環狀共軛系統所組成。2由X-ray單晶繞射結構鑑定出的鍵長和鍵角
,以及光譜資料皆符合文獻上以[18]thiaporphyrin和[26]hexaphyrin為框架之類似化合物的環電流造成的芳香性表現。3由X-ray單晶繞射所確認之固體結構為由扭曲的[36]dithiaoctaphyrin中心和兩個[18]thiaporphyrin朝向接近垂直包含中心主平面的側輪所組成。其扭角為170.3 o和171.3o,暗示可能為包含thiaporphyrins和dithiaoctaphyrin正交的π共軛系統。3在二氯甲烷呈現寬的吸收光譜符合[36]dithiaoctaphyrin的反芳香性特性。同時,在441 nm的吸收位置是由有芳香性的兩個[18]dithiaporphyrin所造成。pyrrole上質子在1H NMR光譜上的化學位移符合反芳香性的[36]dithiaoctaphyrin 和兩個芳香性的[18]thiaporphyrin pyrrole所造成的環電流效應之結果。

以UV–vis和螢光光譜儀偵測其對於不同金屬陽離子和陰離子的敏感性。分子感測器2,5-thienylene strapped [26]hexaphyrin (2 )對於Cu2+和Hg2+在MeOH /THF溶劑中表現高度的選擇性及靈敏度。其光譜顏色的改變主要在可見光區,用肉眼足以觀察。對於Cu2+和Hg2+在MeOH/THF溶劑中的偵測極限分別為1.978µM和1.283µM,對於F-在dichloromethane中偵測極限為1.052µM。化學感測器2對Cu2+和Hg2+的1:1錯合物和F-的1:2錯合物表現出吸收回饋。
分子感測器[18]thiaporphyrin[36]dithiaoctaphyrin[18]thiaporphyrin (3)在MeOH/THF溶劑中可偵測Cu2+、Hg2+和Pd2+。3對於Cu2+、Hg2+和Pd2+在MeOH/THF溶劑中的偵測極限分別為0.3 µM、1.55 µM 和 0.7 µM (3α/slope)。分子感測器3於Cu2+、Hg2+和Pd2+的分別有1:2、1:3和1:4的鍵結當量。


The introducing of the o-dichlorophenyl group as the meso substituent for the preparation of 2,5-thienylene strapped [26]hexaphyrin (2) isolated an unprecedented tricyclic expanded porphyrin, [18]thiaporphyrin[36]dithiaoctaphyrin[18]thiaporphyrin (3). 3 comprises of three conjugation ring systems fused through the 2,5-thienylene bridging moiety. The bond distances and bond angles from the X-ray single-crystal structural determination as well as other spectroscopic data of 2 are in line with its literature reported congeners, which show the contribution of aromaticity from ring currents of both [18]thiaporphyrin and [26]hexaphyrin frameworks. The solid-state structure of 3 revealed by X-ray single crystal diffractometer confirms a distorted [36]dithiaoctaphyrin central core with two [18]thiaporphyrin sidewheels oriented near perpendicular to the mean plane of the central core with torsion angles of 170.3 and 171.3o, likely implying orthogonal π-conjugation systems among thiaporphyrins and dithiaoctaphyrin. The broad absorption spectrum of 3 in CH2Cl2 is consistent with the presence of an anti-aromatic [36]dithiaoctaphyrin core. Meanwhile, a distinctive absorption band at 441 nm suggests that the absorption spectrum is dominated by the aromaticity of two [18]dithiaporphyrin units. The chemical shifts of 1H NMR spectrum of 3 are in agreement with the effects of paratropic ring current exerted on protons at the pyrrolic protons of the anti-aromatic [36]dithiaoctaphyrin and under the influences of the diatropic ring current to protons on pyrrolic protons of two aromatic [18]thiaporphyrin sidewheels.
The sensing of (2) behavior toward various metal ions and anions was investigated by UV–vis and fluorescence spectroscopic techniques. The molecular sensor 2,5-thienylene strapped [26]hexaphyrin (2 ) exhibited a highly selective and sensitive colorimetric response to Cu2+ and Hg2+ in MeOH /THF. The spectral changes obtained are large enough in the visible region of the spectrum and thus enable naked-eye detection. The detection limit of Cu2+ and Hg2+ for this chemo-sensor in MeOH/THF solution was 1.978 and 1.283 µM respectively and 1.052 µM for F- in dichloromethane. Chemosensor 2,5-thienylene strapped [26]hexaphyrin (2 ) shows with absorption responses both Cu2+ and Hg2+ a 1:1 complexes and a 1:2 complex with F- ion.
The molecular sensor [18]thiaporphyrin[36]dithiaoctaphyrin[18]thiaporphyrin (3) detected Pd2+ in MeOH/THF in addition to Cu2+and Hg2+. The detection limit of Cu2+, Hg2+, and Pd2+ for 3 in MeOH/THF solution was 0.3 µM, 1.55 µM, and 0.7 µM, respectively based on 3α/slope. Molecular sensor 3 shows with absorption responses 1:2, 1:3, and 1:4 binding stoichiometry with Cu2+, Hg2+, and Pd2+, respectively.

Content Page Abstract i Acknowledgments v Abbreviations viii List of Figures x 1 Introduction 1.1 Motivation 1 1.2 Background and Literature Review 3 1.3 Expanded Porphyrins 3 1.3.1 Conformation of Expanded Porphyrins 5 1.3.2 Aromaticity and Topology of Expanded porphyrins 7 1.4 Control of Aromaticity by Protonation and Deprotonation 11 1.4.1 Control of Aromaticity by Protonation 12 1.4.2 Control of Aromaticity by Deprotonation 15 1.5 Photo physical properties of Expanded Porphyrins 18 1.6 Bridged Expanded Porphyrins 20 1.6.1 Internally Bridged Porphyrins 23 1.7 Metal Complexes of Expanded Porphyrins 29 1.8 The Role of Porphyrin and its analogue for Ion Sensing 33 1.9 Expanded Porphyrin-Based Chemosensor 34 1.9.1 Expanded Porphyrins for anion Sensing 35 1.9.2 Expanded Porphyrins for Metal Ion Sensing 36 1.10 Scope of the thesis 37 1.11 Outline of Present Work 38 2 Experimental section 2.1 General Experimental Section 40 2.2 Synthesis of 2,5-thienylene-bridged [26]hexaphyrin (2) and 2,5-theinylene strapped [26]thiaporphyrin[36]dithiaoctaphyrin[26]thiaporphyrin(3). 40 2.3 Quantum Mechanical Calculations 42 2.4 Spectroscopic Response Experiments of 2,5-thienylene-strapped [26] hexaphyrin 2. 42 2.5 Spectroscopic response experiments of 2,5-thienylene strapped tricyclic [18] thiaporphyrin[36]dithia-octaphyrin[18]thiaporphyrin (3) 43 3 2,5-Thienylene Strapped Bicyclic and Tricyclic Expanded Porphyrins 3.1 Synthesis 44 3.2 Uv-Visible 1HNMR and Electrochemical Spectra 45 3.3 Crystal Structures and Theoretical Calculations Results of 2 and 3 51 3.4 Conclusion 59 4 Multifunctional chemo sensor of Bicyclic expanded porphyrin for sensing of Hg2+, Cu2+, and F- ions 4.1 Synthesis 60 4.2 Spectroscopic response experiments 60 4.3 UV–Vis spectroscopic studies of S1 and S2 with metal ions and anions 61 4.4 Conclusion 68 5 Colorimetric sensing of Cu2+, Hg2+and Pd2+ of Tricyclic Expanded Porphyrins 5.1 Synthesis 69 5.2 UV–Vis Spectroscopic Studies of 3 with metal ions 70 5.3 Fluorescence Studies of 3 with anions 72 5.4 Conclusion 80 6 Closing Remarks and Future Prospects 6.1 Concluding Remarks 81 6.2 Future Prospects 83 7 References 88 Appendix: Supporting Information 95 Publications 116

(1) Stȩpień, M.; Szyszko, B.; Latos-Grażyński,L. J.Am.Chem.Soc., 2010, 132 (9), 3140-3152.
(2) Stępień, M.; Sprutta, N.; Latos‐Grażyński,L.Angew.Chem., Int.Ed., 2011,50, 4288-
4340.
(3) Tanaka, T.; Osuka,A. Chem. Rev. 2017, 117, 2584-2640.
(4) Chandrashekar, T. K.; Venkatraman, S. Acc.Chem.Res.2003, 36, 676-691.
(5) Bissell, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Maguire, G. E. M.;
Sandanayake, K. R. A. S. Chem. Soc. Rev. 1992, 21,187-195.
(6) Galbraith, E.; James, T. D. Chem. Soc. Rev. 2010, 39, 3831-3842.
(7) Jiang, P.; Guo, Z. Coord. Chem. Rev. 2004, 248, 205-229.
(8) Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Chem. Rev.2013, 113, 192-270.
(9) Shie, J.-J.; Liu, Y.-C.; Lee, Y.-M.; Lim, C.; Fang, J.-M.; Wong, C.-H. J. Am. Chem. Soc.
2014, 136, 9953-9961.
(10) Li, H.; Fan, J.; Peng, X. Chem. Soc. Rev. 2013, 42, 7943-7962.
(11) Fan, J.; Hu, M.; Zhan, P.; Peng, X. Chem. Soc. Rev. 2013, 42, 29-43.
(12) Ding, Y.; Zhu, W.-H.; Xie, Y. Chem. Rev. 2016, 117, 2203-2256.
(13) Higashino, T.; Kumagai, A.; Imahori, H. Chem.Asian J. 2018,13,2019-2022.
(14) Sessler, J. L.; Seidel, D. Angew. Chem. Int. Ed., 2003, 42, 5134-5175.
(15) Sarma, T.; Kim, G.; Sen, S.; Cha, W.-Y.; Duan, Z.; Moore, M. D.; Lynch, V. M.; Zhang,
Z.; Kim, D.; Sessler, J. L. J. Am. Chem. Soc. 2018, 140, 12111-12119.
(16) Alonso, M.; Pinter, B.; Geerlings, P.; De Proft, F. Chem. - Eur. J. 2015, 21, 17631-17638.
(17) Yoon, Z. S.; Osuka, A.; Kim, D. Nat. Chem. 2009, 1, 113.
(18) Chandrashekar, T.; Prabhuraja, V.; Gokulnath, S.; Sabarinathan, R.; Srinivasan, A. Chem.
Commun. 2010,46, 5915-5917.
(19) Pushpan, S. K.; Chandrashekar, T. K. Pure Appl. Chem. 2002, 74, 2045-2055.
(20) Gupta, I.; Ravikanth, M. Coord. Chem. Rev. 2006, 250, 468-518.
(21) Sessler, J. L.; Seidel, D. Angew. Chem., Int. Ed. 2003, 42, 5134-5175.
(22) Jasat, A.; Dolphin, D. Chem. Rev.1997, 97, 2267-2340.
(23) Lee, T.; Zhang, X.-a.; Dhar, S.; Faas, H.; Lippard, S. J.; Jasanoff, A. Chem. Biol. 2010,
17, 665-673.
(24) Yoon, Z. S.; Kwon, J. H.; Yoon, M.-C.; Koh, M. K.; Noh, S. B.; Sessler, J. L.; Lee, J. T.;
Seidel, D.; Aguilar, A.; Shimizu, S.; Suzuki, M.; Osuka, A.; Kim, D. J. Am. Chem. Soc.
2006, 128, 14128-14134.
(25) Thomas, S.; Pati, Y. A.; Ramasesha, S. J. Phys. Chem. A, 2013, 117, 7804-7809.
(26) Rath, H.; Sankar, J.; Prabhuraja, V.; Chandrashekar, T. K.; Nag, A.; Goswami, D.
J.Am. Chem. Soc.,2005, 127, 11608-11609.
(27) Wu, J. I.; Fernández, I.; Schleyer, P. v. R. J.Am. Chem. Soc.,2013, 135, 315-321.
(28) Sessler, J. L.; Tomat, E.Acc.Chem. Res., 2007, 40, 371-379.
(29) Zhang, Z.; Kim, D. S.; Lin, C.-Y.; Zhang, H.; Lammer, A. D.; Lynch, V. M.; Popov, I.;
Miljanić, O. Š.; Anslyn, E. V.; Sessler, J. L. J.Am.Chem.Soc., 2015,137, 7769-7774.
(30) Vargas-Zúñiga, G. I.; Sessler, J. L.Adv. Inorg. Chem., van Eldik, R.;
Puchta, R., Eds.Academic Press: 2018; Vol. 71, pp 327-377.
(31) Sessler, J. L.; Cyr, M. J.; Lynch, V.; McGhee, E.; Ibers, J. A. J.Am.Chem.Soc., 1990,
112, 2810-2813.
(32) Kadish, K. M.; Smith, K. M.; Guilard, R., The Porphyrin Handbook: Inorganic,
organometallic and coordination chemistry. Elsevier: 2000; Vol. 3.
(33) Sessler, J. L.; Weghorn, S. J., Expanded, contracted & isomeric porphyrins. Elsevier:
1997;Vol. 15.
(34) Vogel, E.; Bröring, M.; Fink, J.; Rosen, D.; Schmickler, H.; Lex, J.; Chan, K. W. K.; Wu,
Y.-D.; Plattner, D. A.; Nendel, M.; Houk, K. N. Angew. Chem., Int. Ed. Engl. 1995, 34,
2511-2514.
(35) Sessler, J. L.; Cyr, M. J., Sapphyrins, derivatives and syntheses. Google Patents: 1994.
(36) Suzuki, M.; Osuka, A. Org. Lett. 2003, 5, 3943-3946.
(37) Sessler, J. L.; Morishima, T.; Lynch, V. Angew. Chem. Int.Ed.Engl.1991, 30, 977-980.
(38) Sessler, J. L.; Seidel, D.; Lynch, V. J.Am.Chem.Soc.1999, 121, 11257- 11258.
(39) Anand, V. G.; Pushpan, S. K.; Venkatraman, S.; Dey, A.; Chandrashekar, T. K.; Joshi, B.
S.; Roy, R.; Teng, W.; Senge, K. R. J.Am.Chem.Soc.,2001, 123, 8620-8621.
(40) Taniguchi, R.; Shimizu, S.; Suzuki, M.; Shin, J.-Y.; Furuta, H.; Osuka, A. Tetrahedron
Lett. 2003, 44, 2505-2507.
(41) Setsune, J.-i.; Katakami, Y.; Iizuna, N. J.Am.Chem.Soc.,1999, 121, 8957-8958.
(42) Sessler, J. L.; Seidel, D. Angew. Chem. Int. Ed., 2003, 42, 5134-5175.
(43) Misra, R.; Chandrashekar, T. K. Acc.Chem.Res.,2008, 41, 265-279.
(44) Chmielewski, P. J.; Latos-Grażyński, L.; Rachlewicz, K. Chem.- Eur. J. 1995, 1, 68-73.
(45) Ste, M., Aromaticity and tautomerism in porphyrins and porphyrinoids. 2008.
(46) Saito, S.; Osuka, A. Angew. Chem. Int. Ed. 2011, 50, 4342-4373.
(47) Pohl, M.; Schmickler, H.; Lex, J.; Vogel, E.Angew.Chem. Int. Ed.Engl.,1991, 30, 1693-
1697.
(48) Reddy, J. S.; Anand, V. G. J.Am.Chem. Soc.,2008, 130, 3718-3719.
(49) Heilbronner, E. Tetrahedron Lett.1964, 5, 1923-1928.
(50) Ajami, D.; Oeckler, O.; Simon, A; Herges, R. Nature 2003, 426, 819-821.
(51) Stępień, M.; Latos‐Grażyński, L.; Sprutta, N.; Chwalisz, P.; Szterenberg, L. Angew.
Chem. Int. Ed.,2007, 46, 7869-7873.
(52) Saito, S.; Shin, J.-Y.; Lim, J. M.; Kim, K. S.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed.
2008, 47, 9657-9660.
(53) Alonso, M.; Geerlings, P.; De Proft, F.Chem.-Eur. J. 2013, 19, 1617-1628.
(54) Alonso, M.; Geerlings, P.; de Proft, F. Chem.-Eur. J. 2012, 18, 10916-10928.
(55) Saito, S.; Shin, J. Y.; Lim, J. M.; Kim, K. S.; Kim, D.; Osuka, A. J. A. C., Angew. Chem.,
Int. Ed. 2008, 47, 9657-9660.
(56) Lim, J. M.; Shin, J.-Y.; Tanaka, Y.; Saito, S.; Osuka, A.; Kim, D. J.Am.Chem.Soc.,
2010, 132, 3105-3114.
(57) Karthik, G.; Lim, J. M.; Srinivasan, A.; Suresh, C.; Kim, D.; Chandrashekar, T. K.
Chem.-Eur. J. 2013, 19, 17011-17020.
(58) Ishida, S. i.; Higashino, T.; Mori, S.; Mori, H.; Aratani, N.; Tanaka, T.; Lim, J. M.; Kim,
D.; Osuka, A. Angew. Chem., Int. Ed. 2014, 53, 13169.
(59) Dorough, G.; Miller, J.; Huennekens, F. M. J. Am. Chem. Soc. 1951, 73, 4315-4320.
(60) Ojadi, E. C.; Linschitz, H.; Gouterman, M.; Walter, R. I.; Lindsey, J. S.; Wagner, R. W.;
Droupadi, P.; Wang, W. J. Phys. Chem. 1993, 97, 13192-13197.
(61) Cha, W. Y.; Lim, J. M.; Yoon, M. C.; Sung, Y. M.; Lee, B. S.; Katsumata, S.; Suzuki,
M.; Mori, H.; Ikawa, Y.; Furuta, H. Chem.-Eur. J. 2012, 18,15838-15844.
(62) Shin, J.-Y.; Lim, J. M.; Yoon, Z. S.; Kim, K. S.; Yoon, M.-C.; Hiroto, S.; Shinokubo, H.;
Shimizu, S.; Osuka, A.; Kim, D. J. Phys. Chem. B 2009, 113, 5794-5802.
(63) Cha, W.-Y.; Soya, T.; Tanaka, T.; Mori, H.; Hong, Y.; Lee, S.; Park, K. H.; Osuka, A.;
Kim, D. Chem.Commun. 2016, 52, 6076-6078.
(64) Roy, M.; Gold, S.; Johnson, A.; Osuna Orozco, R.; Holtzman, B. K.; Gaherty, J. J.
Geo. Res. 2016, 121, 3762-3781.
(65) Shin, J.-Y.; Kim, K. S.; Yoon, M.-C.; Lim, J. M.; Yoon, Z. S.; Osuka, A.; Kim, D.Chem.
Soc. Rev. 2010, 39, 2751-2767.
(66) Ahn, T. K.; Kwon, J. H.; Kim, D. Y.; Cho, D. W.; Jeong, D. H.; Kim, S. K.; Suzuki, M.;
Shimizu, S.; Osuka, A.; Kim, D. J. Am. Chem. Soc. 2005, 127,12856-12861.
(67) Yoon, Z. S.; Cho, D.-G.; Kim, K. S.; Sessler, J. L.; Kim, D. J. Am. Chem. Soc. 2008, 130
,6930-6931.
(68) Miura, T.; Higashino, T.; Saito, S.; Osuka, A. Chem.-Eur. J. 2010, 16, 55-59.
(69) Kim, K. S.; Lim, J. M.; Osuka, A.; Kim, D. J. Photochem. Photobiol., C 2008, 9, 13-8.
(70) Kumar, R.; Misra, R.; Chandrashekar, T. K.; Suresh, E. Chem .Commun. 2007, 1, 43-45.
(71) Ryan, A.; Gehrold, A.; Perusitti, R.; Pintea, M.; Fazekas, M.; Locos, O. B.; Blaikie, F.;
Senge, M. O. J. Euro. J. Org. Chem. 2011, 5817-5844.
(72) Song, J.; Jang, S. Y.; Yamaguchi, S.; Sankar, J.; Hiroto, S.; Aratani, N.; Shin, J. Y.;
Easwaramoorthi, S.; Kim, K. S.; Kim, D. Angew. Chem. Int. Ed. 2008, 47, 6004-6007.
(73) Mitsushige, Y.; Yamaguchi, S.; Lee, B. S.; Sung, Y. M.; Kuhri, S.; Schierl, C. A.; Guldi,
D. M.; Kim, D.; Matsuo, Y.J. Am. Chem. Soc. 2012, 134, 16540-16543.
(74) Anand, V. G.; Saito, S.; Shimizu, S.; Osuka,A. Angew.Chem.Int.Ed. 2005,44, 7244-7248.
(75) Karthik, G.; Sneha, M.; Raja, V. P.; Lim, J. M.; Kim, D.; Srinivasan, A.; Chandrashekar,
T. K. Chem.-Eur. J. 2013, 19, 1886-1890.
(76) Mori, H.; Lim, J. M.; Kim, D.; Osuka, A. Angew. Chem. Int. Ent. 2013, 52, 12997-
13001.
(77) Soya, T.; Mori, H.; Hong, Y.; Koo, Y. H.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed.
2017, 56, 3232-3236.
(78) Suzuki, M.; Osuka, A. J.Am. Chem. Soc. 2007, 129, 464-465.
(79) Preihs, C.; Arambula, J. F.; Magda, D.; Jeong, H.; Yoo, D.; Cheon, J.; Siddik, Z. H.;
Sessler, J. L. Inorg. Chem.2013, 52, 12184-12192.
(80) Sessler, J. L.; Mody, T. D.; Hemmi, G. W.; Lynch, V.; Young, S. W.; Miller, R. A. J.
Am. Chem. Soc.1993, 115,10368-10369.
(81) Thiabaud, G.; Arambula, J. F.; Siddik, Z. H.; Sessler, J. L. Chem.-Eur. J. 2014,20,
8942-8947.
(82) Young, S.; Woodburn, K.; Wright, M.; Mody, T.; Fan, Q.; Sessler, J.; Dow, W.; Miller,
R. Photochem. Photobiol. 1996, 63, 892-897.
(83) Magda, D.; Wright, M.; Miller, R. A.; Sessler, J. L.; Sansom, P. I. J. Am. Chem. Soc.
1995, 117, 3629-3630.
(84) Dimofte, A.; Zhu, T. C.; Hahn, S. M.; Lustig, R. A. J. L. i. S.; Medicine, M. T. Lasers
Surg. Med. 2002, 31, 305-312.
(85) Sessler, J. L.; Mody, T. D.; Lynch, V. Inorg. Chem.1992,31, 529-531.
(86) Sessler, J. L.; Gorden, A. E.; Seidel, D.; Hannah, S.; Lynch, V.; Gordon, P. L.; Donohoe,
R. J.; Tait, C. D.; Keogh, D. W. Inorg. Chim. Acta. 2002, 341, 54-70.
(87) Sessler, J.; Vivian, A.; Seidel, D.; Burrell, A.; Hoehner, M.; Mody, T.; Gebauer, A.;
Weghorn, S.; Lynch, V. Coord. Chem. Rev. 2001, 222, 275-276.
(88) Sessler, J. L.; Mody, T. D.; Lynch, V. J. Am. Chem. Soc.1993, 115, 3346-3347.
(89) Sessler, J. L.; Tomat, E. Acc.Chem.Res. 2007, 40, 371-379.
(90) Sessler, J. L.; Cho, W.-S.; Dudek, S. P.; Hicks, L.; Lynch, V. M.; Huggins, M. T. J.
Porphy. and Phthalocyan. 2003, 7 , 97-104.
(91) Veauthier, J. M.; Cho, W.-S.; Lynch, V. M.; Sessler, J. L. Inorg.Chem.2004, 43,1220-
1228.
(92) Arnold, P. L.; Patel, D.; Wilson, C.; Love, J. B. J. Nature 2008, 451, 315-318.
(93) Bell, N. L.; Arnold, P. L.; Love, J. B. Dalton Trans. 2016, 45,15902-15909.
(94) Sessler, J. L., Porphyrin analogues. J. Porphy. Phthalocyan.2000, 4, 331-336.
(95) Johnson, A.; Price, R.J.Am. Chem. Soc. 1960, 1649-1653.
(96) Beer, P. D.; Gale, P. A.Angew. Chem.Int. Ed. 2001, 40, 486-516.
(97) Sessler, J. L.; Camiolo, S.; Gale, P. A.Coord. Chem. Rev. 2003, 240, 17-55.
(98) Ko, S.-K.; Kim, S. K.; Share, A.; Lynch, V. M.; Park, J.; Namkung, W.; Van Rossom,
W.; Busschaert, N.; Gale, P. A.; Sessler, J. L. Nat. Chem. 2014, 6,885.
(99) Anand, V. G.; Venkatraman, S.; Rath, H.; Chandrashekar, T. K.; Teng, W.; Ruhlandt‐
Senge, K.Chem.-Eur. J. 2003, 9, 2282-2290.
(100) Misra, R.; Anand, V. G.; Rath, H.; Chandrashekar, T. K. J. Chem. Sci. 2005, 117, 99-103.
(101) Sessler, J. L.; Davis, J. M. Acc. Chem. Res. 2001, 34, 989-997.
(102) Sessler, J. L.; Melfi, P. J.; Seidel, D.; Gorden, A. E.; Ford, D. K.; Palmer, P. D.; Tait, C.
D.. Tetrahedron 2004, 60, 11089-11097.
(103) Sessler, J. L.; Seidel, D.; Vivian, A. E.; Lynch, V.; Scott, B. L.; Keogh, D. W.Angew.
Chem. Int. Ed. 2001, 40,591-594.
(104) Zhu, X.; Fu, S.; Wong, W.-K.; Wong, W.-Y.Tetrahedron Lett. 2008, 49, 1843-1846.
(105) Wu, D.; Descalzo, A. B.; Weik, F.; Emmerling, F.; Shen, Z.; You, X. Z.; Rurack, K.
Angew. Chem.Int. Ed. 2008, 47, 193-197.
(106) Ganapathi, E.; Lee, W.-Z.; Ravikanth, M. J. Org.chem. 2014, 79, 9603-9612.
(107) Higashino, T.; Kumagai, A.; Imahori, H. Chem.Asian J. 2018, 13, 2019-2022.
108) Kolanowski, J. L.; Liu, F.; New, E. J.Chem.Soc. Rev. 2018, 47,195-208.
(109) Ashrafi, A. M.; Koudelkova, Z.; Sedlackova, E.; Richtera, L.; Adam,
V.J.Electrochem.Soc., 2018, 165 , B824-B834.
(110) Amendola, V.; Fabbrizzi, L.; Foti, F.; Licchelli, M.; Mangano, C.; Pallavicini,
P.;Poggi, A.; Sacchi, D.; Taglietti, A. Coord.Chem.Rev., 2006, 250, 273-299.
(111) Udhayakumari, D.; Naha, S.; Velmathi, S. J. A. M. Anal.Methods.2017, 9,
552-578.
(112) Ranjith Kumar, J.; Rami Reddy, E.; Trivedi, R.; Vardhaman, A. K.; Giribabu,
L.;Mirzadeh, N.; Bhargava, S. K. Appl. Organomet. Chem., 2019, 33,
e4688.
(113) Hung, C.-H.; Chang, G.-F.; Kumar, A.; Lin, G.-F.; Luo, L.-Y.; Ching, W.-M.;
Diau, E. W.-G. Chem. Commun., 2008, 8, 978-980.
(114) Syu, J. H.; Cheng, Y. K.; Hong, W. Y.; Wang, H. P.; Lin, Y. C.; Meng, H. F.;
Zan, H. W.; Horng, S. F.; Chang, G. F.; Hung, C. H. Adv. Funct. Mater., 2013,
23 , 1566-1574.
(115) Ding, Y.; Zhu, W.-H.; Xie, Y. Chem. Rev., 2017, 117, 2203-2256.
(116) Ponram, M.; Balijapalli, U.; Sambath, B.; Iyer, S. K.; B, V.; Cingaram, R. New
J. Chem. 2018, 42, 8530-8536.
(117) Mori, H.; Lim, J. M.; Kim, D.; Osuka, A. Angew. Chem. Int. Ed.2013, 52, 12997-
13001.
(118) Littler, B. J.; Miller, M. A.; Hung, C.-H.; Wagner, R. W.; O'Shea, D. F.; Boyle, P. D.;
Lindsey, J. S. J. T. J. Org. Chem.1999,64, 1391-1396.

(119) Sprutta, N.; Latos-Grażyński, L. Chem.–Eur. J. 2001, 7, 5099-5112.
(120) Saltsman, I.; Goldberg, I.; Balasz, Y.; Gross, Z.Tetrahedron Lett.2007, 48, 239-244.
(121) Furuta, H.; Maeda, H.; Furuta, T.; Osuka, A. J. Org. lett. 2000, 2, 187-189.
(122) Saito, S.; Shin, J. Y.; Lim, J. M.; Kim, K. S.; Kim, D.; Osuka, A.Angew.Chem.Int.Ed.
2008, 47, 9657-9660.
(123) Lim, J. M.; Shin, J.-Y.; Tanaka, Y.; Saito, S.; Osuka, A.; Kim, D. J.Am. Chem. Soc. 2010,
132, 3105-3114.
(124) Zhou, Y.; Zhang, J. F.; Yoon, J. Chem. Res.2014, 114, 5511-5571.
(125) Chavali, R.; Gunda, N. S. K.; Naicker, S.; Mitra, S. K.Anal. Chem. Res. 2015, 6, 26-31.

無法下載圖示 全文公開日期 2022/07/25 (校內網路)
全文公開日期 2024/07/25 (校外網路)
全文公開日期 2021/07/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE