簡易檢索 / 詳目顯示

研究生: 馮立婷
Li-Ting Fong
論文名稱: 研究亞硝基及一氧化氮在雙亞硝基鐵及碳氫異位紫質鐵錯合物間轉換機制及水溶性碳氫異位紫質鐵錯合物之亞硝酸鹽還原反應
Study on Nitrite Reduction and NO Transformation between DNIC and Iron N-confused Porphyrin Complexes and Nitrite Reduction Using Water-soluble Iron N-confused Porphyrin Complexes
指導教授: 林昇佃
Shawn D. Lin
洪政雄
Chen-Hsiung Hung
口試委員: 廖文
Wen-Feng. Liaw
王雲銘
Yun-Ming Wang
江明錫
Ming-Hsi Chiang
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 161
中文關鍵詞: 硝基及一氧化氮在雙亞硝基鐵碳氫異位紫質鐵錯合物水溶性碳氫異位紫質鐵錯合物亞硝酸鹽還原反應
外文關鍵詞: NO Transformation, DNIC, Iron N-confused Porphyrin Complexes, Nitrite Reduction, Water-soluble Iron N-confused Porphyrin Complexe
相關次數: 點閱:287下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文第一個部分是研究碳氫異位紫質鐵錯合物與具有硝基及一氧化氮的DNICs之間的反應。我們以碳氫異位紫質鐵錯合物中心去了解一氧化氮由[PPh3][Fe(NO)2(ONO)2]轉移至紫質中心的反應過程。研究結果顯示 [FeII(HCTPPH)Br]與[FeIII(HCTPP)Br]具有還原亞硝基鹽的能力。其中由[Fe(HCTPPH)Br]與[PPh3][Fe(NO)2(ONO)2]在2:1當量反應中,使用同位素[PPh3] [Fe(NO)2(O15NO)2]當起始物,我們得到1:1的[Fe(CTPP)(14NO)] 與 [Fe(CTPP)(15NO)]的混合產物。[PPN][Fe(NO)2(ONO)2]則轉換成[PPh3][Fe(14NO)(15NO2)Br2]。結果顯示一當量的一氧化氮由DNIC的亞硝酸還原而來,而另一當量由DNIC上的一氧化氮直接轉移。我們以實驗確認,一氧化氮轉移至碳氫異位紫質鐵錯合物的同時釋放出羥基自由基。在1:4 [PPN][Fe(NO)2(ONO)2]與[FeII(HCTPPH)Br] 當量比下的反應結果顯示[PPh3][Fe(NO)2(ONO)2] 能夠提供4當量的一氧化氮。
    第二部分是研究具有水溶性的碳氫異位紫質鐵錯合物模擬亞硝酸鹽還原反應。首先利用磺酸化將碳氫異位紫質錯合物化合成NCPS再金屬化合成具有高水溶性的[FeII(HNCPSH)Br]。其中由[FeII(HNCPSH)Br] 與NaNO2在1:1當量反應中,顯示[FeII(HNCPSH)Br]可進行亞硝酸還原反應並獲得產物{Fe(NO)}7 [Fe(HNCPS)(NO)] ,再被反應中產生的氫氧自由基氧化形成{Fe(NO)}6 [Fe(NCPS)(MeOH)(NO)]。當系統中有過多的亞硝酸鹽,[Fe(HNCPS)(NO)]與 [Fe(NCPS)(MeOH)(NO)]皆會直接轉變成{Fe(NO)}6 [Fe(NCPSO)(NO)]。在[FeIII(HNCPS)Br]為反應物的狀況下,也能夠會進行亞硝酸還原反應並直接獲得產物[Fe(NCPS)(MeOH)(NO)]與[Fe(NCPSO)(NO)]無須經過{Fe(NO)}7 [Fe(HNCPS)(NO)],其中[Fe(NCPS)(MeOH)(NO)] 再被反應中產生的氫氧自由基氧化形成{Fe(NO)}6 [Fe(NCPSO)(NO)]。最後,我們也證實亞硝酸還原反應可以在水相中得到與與甲醇中相同結果產物。


    We studied the nitrite reduction and NO transfer between O-bound nitrito coordinated [PPN][Fe(NO)2(ONO)2] and iron N-confused porphyrin center. The nitrite reduction reaction activities converts iron(II) and iron(III) N-confused porphyrin complexes to [Fe(HCTPP)(NO)], [Fe(CTPP)(NO)], or [Fe(CTPPO)(NO)]. Under a 2:1 iron porphyrin/DNIC mole ratio, using 15N isotope labelled [PPh3] [Fe(NO)2(O15NO)2] as the starting DNIC, a 1:1 mixture of [Fe(CTPP)(14NO)] and [Fe(CTPP)(15NO)] are obtained while the DNIC transformed into [PPh3][Fe(14NO)(15NO2)Br2], suggesting that one equivalent of nitrite reduction and one equivalent of direct NO transformation have occurred. NO has found to transfer and coordinate to the axial position of iron(II) N-confused porphyrin center with the release of a hydroxyl radical while the second coordinated nitrite (NO2) is reduced to NO on DNIC coordination sphere to complete the conversion of [PPh3] [Fe(NO)2(ONO)2] into [PPh3][Fe(NO)2Br2]. Under a 4:1 iron porphyrin/DNIC mole ratio, our results demonstrate that [PPN][Fe(NO)2(ONO)2] can serve as a four equivalent nitric oxide donating molecule.
    To explore the tendency of nitrite reduction in aqueous phase, we have synthesized water-soluble N-confused porphyrin iron(II) complexes. Tetraphenyl N-confused porphyrin (NCTPP), bearing four 4-sulfonatophenyl groups at the meso positions, and its iron(II) complex, [FeII(HNCPSH)Br], were synthesized. The solution IR studies showed the formation of {Fe(NO)}7 [Fe(HNCPS)NO] as the final product when 0.5 equiv of sodium nitrite was reacted with one equiv of starting [FeII(HNCPSH)Br] in MeOH. We have also confirmed that NaNO2 can directly react with {Fe(NO)}7 and {Fe(NO)}6 iron nitrosyl complexes to result O-atom insertion between Fe-C bond and obtained {Fe(NO)}6 [Fe(CTPPO)NO]. The nitrite reduction reaction in aqueous solution observed the formation of iron nitrosyl complex as in MeOH

    ABSTRACT 摘要 LIST OF FIGURES LIST OF COMPOUNDS Chapter 1. NO Transfer from Nitrito Coordinated Dinitrosyl Iron Complex to Iron N-Confused Porphyrin: Stepwise Nitrite Reduction and Transnitrosylation Reactions 1. Introduction 1.1 The history and impact of porphyrin 1.2 The famous synthesizes of porphyrin 1.3 The biological background of iron porphyrins 1.4 The history and impact of nitric oxide 1.5 Metal-NO complexes 1.5.1 Iron-sulfur cluster nitrosyls 1.5.2 Dinitrosyl iron complexes (DNICs) 1.5.3 Iron porphyrin nitrosyls 2. Results 2.1 Nitrite Reduction 2.2 Nitrite reduction and/or NO transformation reaction between nonheme iron complexes and iron N-confused porphyrin center 2.2.1 Reactions of [FeII(HCTPPH)Br] (1) and [FeIII(HCTPP)Br] (2) with DNIC-NO2 in 2:1 molar ratio 2.2.2 The source of hydroxyl radical 2.2.3 15N Isotopic labeling studies between [PPN][Fe(NO)2(15NO2)] and [FeII(HCTPPH)Br] (1) or [FeIII(HCTPP)Br] (2) in a 2:1 ratio 2.2.4 Reaction of [FeII(HCTPPH)Br] (1) with [PPN][(NO)2Fe(ONO)2] (7) in 4:1 molar ratio 2.2.5 Reaction of [FeIII(HCTPP)Br] (2) with [PPN][Fe(NO)2(NO2)2] (7) in 4:1 molar ratio 2.3 Reaction using [PPN]2[Fe(κ2 -O2NO)4] (8) 3. Discussion 3.1 NO/nitrite/nitrate transfer reaction between nonheme iron complexes and iron N-confused porphyrin center 3.2 What promotes or activates the nitrite dissociation from DNIC-NO2? 3.3 Nitrate reduction to form nitrosyl iron porphyrin by distinctive [PPN]2[Fe(κ2 -O2NO)4] (8) 4. Conclusion and Future Prospective 5. Materials and Methods 5.1 Chemicals and materials 5.2 Instruments and equipment 5.3 Preparation of starting material: 5.3.1. Heme part 5.3.2 Nonheme part 5.4 Reaction procedures 5.4.1 Reaction of [FeII(HCTPPH)Br] (1) with [PPN][Fe(NO)2(ONO)2] (7) in a 2:1 molar ratio at room temperature 5.4.2 Reaction of [FeIII(HCTPP)Br] (2) with [PPN][Fe(NO)2(ONO)2] (7) in a 2:1 molar ratio at room temperature 5.4.3 Reaction of [FeII(HCTPPH)Br] (1) with [PPN][Fe(NO)2(ONO)2] (7) in a 2:1 molar ratio at room temperature in presence of Dimethyl sulfoxide (DMSO) or MeOH 5.4.4 Reaction of [FeII(HCTPPH)Br] (1) with [PPN][Fe(NO)2(ONO)2] (7) in a 4:1 molar ratio at room temperature 5.4.5 Reaction of [FeIII(HCTPP)Br] (2) with [PPN][Fe(NO)2(ONO)2] (7) in a 4:1 molar ratio at room temperature 5.4.6 Reaction of [FeII(HCTPPH)Br] (1) with [PPN]2[Fe(κ2 -O2NO)4] (8) in a 2:1 molar ratio at room temperature Reference Chapter 2. Nitrite Reduction conducted by Water-Soluble Iron N-Confused Porphyrin 1. Introduction 1.1 Chemistry water soluble porphyrins 1.2 The general trends of water soluble metalloporphyrins 1.3 The history and impact of nitric oxide 1.4 Chemical biology of relationship between nitrite and nitric oxide 2. Results and Discussion 2.1 Nitrite reduction of water-soluble porphyrin 2.1.1 Free base is TG-NCP (5) 2.1.1.1 Nitrite reduction of [FeII(TG-NCP)Br] (6) with NaNO2 in DMSO medium 2.1.2 The using of water-soluble NCPS (9) as the ligand 2.1.2.1 The synthesis and characterization of [FeII(HNCPSH)] (3) 2.1.2.1.1 The reaction of [FeII(HNCPSH)Br] (3) with NaNO2 in a 2:1 molar ratio 2.1.2.1.2 The reaction of [FeII(HNCPSH)Br] (3) with equal equivalent or slight excess of NaNO2 2.1.2.1.3 The reaction of [FeII(HNCPSH)Br] (3) with NaNO2 in 1:2 ratio 2.1.2.1.4 The reaction of [FeII(HNCPSH)Br] (3) with NaNO2 in 1:5 ratio 2.1.2.2 [FeIII(HNCPS)Br] (4) 2.1.2.2.1 The reaction of [FeIII(HNCPS)Br] (4) with NaNO2 in 1:0.5 ratio 2.1.2.2.2 The reaction of [FeIII(HNCPS)Br] (4) with NaNO2 in 1:2 and 1:5 ratio 2.2 Nitrite reduction reaction in aqueous solution 3. Closing Remarks and Future Perspective 4. Materials and Methods 4.1 Chemicals and materials 4.2 Instruments and equipment 4.3 Preparation of starting material 4.4 Reaction procedures 4.4.1 Nitrite reduction of [FeII(HNCPSH)Br] (3) with NaNO2 in a 2:1 molar ratio in MeOH medium 4.4.2 Nitrite reduction of [FeII(HNCPSH)Br] (3) with NaNO2 in a 1:1 molar ratio in MeOH medium 4.4.3 Nitrite reduction of [FeII(HNCPSH)Br] (3) with NaNO2 in a 1:2 molar ratio in MeOH medium 4.4.4 Nitrite reduction of [FeII(HNCPSH)Br] (3) with NaNO2 in a 1:5 molar ratio in MeOH medium 4.4.5 Nitrite reduction of [FeII(HNCPSH)Br] (3) with NaNO2 in a 1:1.2 molar ratio in water medium 4.4.6 Nitrite reduction of [FeIII(HNCPS)Br] (4) with NaNO2 in a 2:1 molar ratio in MeOH medium 4.4.7 Nitrite reduction of [FeIII(HNCPS)Br] (4) with NaNO2 in a 1:2 molar ratio in MeOH medium 4.4.8 Nitrite reduction of [FeIII(HNCPS)Br] (4) with NaNO2 in a 1:5 molar ratio in MeOH medium 4.4.9 Nitrite reduction of [FeII(TG-NCP)Br] (6) with NaNO2 in a 1:10 molar ratio in DMSO medium Reference

    Reference
    1. (a) Chang, C. K., J. Biol. Chem. 1985, 260, 9520-2; (b) Menger, F. M.; Ladika, M., J. Am. Chem. Soc. 1987, 109, 3145-3146; (c) Sotiriou, C.; Chang, C. K., J. Am. Chem. Soc. 1988, 110, 2264-2270.
    2. H. Fischer and H. Orth, D. C. d. P., Volume I, 1934, Volume II, ; Part 1, Akademische Verlagsgesellschaft M.B.H. Leipzig, Johnson Reprint ; Corporation, N. Y., 1968. .
    3. (a) Koelsch, C. F.; Richter, H. J., J. Am. Chem. Soc. 1935, 57, 2010-2010; (b) Rothemund, P., J. Am. Chem. Soc. 1936, 58, 625-627; (c) Rothemund, P.; Menotti, A. R., J. Am. Chem. Soc. 1941, 63, 267-270.
    4. Goldmacher, J.; Barton, L. A., The Journal of Organic Chemistry 1967, 32, 476-477.
    5. Liu, B. Y.; Bruckner, C.; Dolphin, D., Chem. Commun. 1996, 18, 2141-2142.
    6. (a) In Handbook of Metalloporproteins, Messerschmidt, A.; R. Huber, T. P.; Wieghardt, K., Eds. J. Wiley & Sons Ltd: Chichester, UK,, 2001; Vol. 1; (b) P. R. O. d. Montellano (Ed.), C. P.-., 3rd edn. Plenum Press, New York, 2005; (c) Denisov, I. G.; Makris, T. M.; Sligar, S. G.; Schlichting, I., Chem. Rev. 2005, 105, 2253-77; (d) Poulos, T. L., In The Porphyrin Handbook, K. M. Kadish, K. M. S., R. Guilard, Ed. Elsevier Science: Oxford, 2000; Vol. 4.
    7. (a) Kadish, K. M.; Smith, K. M.; Guilard, R., Preface. In The Porphyrin Handbook, Guilard, K. M. K. M. S., Ed. Academic Press: Amsterdam, 2003; p ix; (b) B, K., Chimia 1987, 41, 277-292.
    8. L. Banci, M. A., In Handbook of Metalloproteins, Messerschmidt A, H. R., Poulos TL, Wieghardt K, Ed. Wiley, 2001; pp 33–43.
    9. (a) Ghosh, A., In The porphyrin handbook, Guilard, K. M. K. M. S., Ed. Academic Press: Amsterdam, 2000; (b) Shaik, S.; de Visser, S. P.; Ogliaro, F.; Schwarz, H.; Schröder, D., Curr. Opin. Chem. Biol. 2002, 6, 556-567.
    10. (a) Phiips, G. N. J., In Handbook of Metalloproteins, Messerschmidt A, H. R., Poulos TL, Wieghardt K, Ed. Wiley, 2001; (b) M. Paoli, K. N., In Handbook of Metalloproteins, Messerschmidt A, H. R., Poulos TL, Wieghardt K, Ed. Wiley, 2001.
    11. L. cheng, G. B. R.-A., In The Porphyrin Handbook, Guilard, K. M. K. M. S., Ed. 2000; Vol. 4.
    12. (a) Reynolds, M. F.; Burstyn, J. N., Chapter 25 - Mechanism of Activation of Soluble Guanylyl Cyclase by NO: Allosteric Regulation through Changes in Heme Coordination Geometry. In Nitric Oxide, Ignarro, L. J., Ed. Academic Press: San Diego, 2000; pp 381-399; (b) Ignarro, L. J., Angew. Chem., Int. Ed. 1999, 38, 1882-1892.
    13. Modun, D.; Giustarini, D.; Tsikas, D., Oxid. Med. Cell. Longevity 2014, 2014, 3.
    14. Ignarro, L. J., Nitric Oxide: Biology and Pathobiology. Academic Press: San Diego, 2000.
    15. (a) Lundberg, J. O.; Weitzberg, E.; Gladwin, M. T., Nat. Rev. Drug Discovery 2008, 7, 156-167; (b) Gladwin, M. T.; Schechter, A. N.; Kim-Shapiro, D. B.; Patel, R. P.; Hogg, N.; Shiva, S.; Cannon, R. O.; Kelm, M.; Wink, D. A.; Espey, M. G.; Oldfield, E. H.; Pluta, R. M.; Freeman, B. A.; Lancaster, J. R.; Feelisch, M.; Lundberg, J. O., Nat Chem Biol 2005, 1, 308-314.
    16. Gladwin, M. T.; Kim-Shapiro, D. B., Blood 2008, 112, 2636-2647.
    17. Zweier, J. L.; Li, H. T.; Samouilov, A.; Liu, X. P., Nitric Oxide-Biol Ch 2010, 22, 83-90.
    18. Hendgen-Cotta, U. B.; Merx, M. W.; Shiva, S.; Schmitz, J.; Becher, S.; Klare, J. P.; Steinhoff, H.-J.; Goedecke, A.; Schrader, J.; Gladwin, M. T.; Keim, M.; Rassaf, T., Proc. Natl. Acad. Sci. U. S. A.2008, 105, 10256-10261.
    19. (a) Chemical & Engineering News Archive 1993, 71, 26-38; (b) Kerwin, J. F.; Lancaster, J. R.; Feldman, P. L., J. Med. Chem. 1995, 38, 4343-4362; (c) Stamler, J.; Singel, D.; Loscalzo, J., Science 1992, 258, 1898-1902.
    20. 12 - Phosphorus. In Chemistry of the Elements (Second Edition), Greenwood, N. N.; Earnshaw, A., Eds. Butterworth-Heinemann: Oxford, 1997; pp 473-546.
    21. Howland, J. L., Biochem. Educ. 1997, 25, 184-185.
    22. (a) Traylor, T. G.; Sharma, V. S., Biochemistry 1992, 31, 2847-2849; (b) Radi, R., Chem. Res. Toxicol.1996, 9, 828-835; (c) Hoshino, M.; Laverman, L.; Ford, P. C., Coord. Chem. Rev. 1999, 187, 75-102.
    23. (a) Kim, S.; Deinum, G.; Gardner, M. T.; Marletta, M. A.; Babcock, G. T., J. Am. Chem. Soc. 1996, 118, 8769-8770; (b) Burstyn, J. N.; Yu, A. E.; Dierks, E. A.; Hawkins, B. K.; Dawson, J. H., Biochemistry 1995, 34, 5896-5903.
    24. Minamiyama, Y.; Takemura, S.; Imaoka, S.; Funae, Y.; Tanimoto, Y.; Inoue, M., J. Pharmacol. Exp. Ther. 1997, 283, 1479-1485.
    25. Cleeter, M. W. J.; Cooper, J. M.; Darley-Usmar, V. M.; Moncada, S.; Schapira, A. H. V., FEBS Lett. 345, 50-54.
    26. (a) Noguchi, T.; Honda, J.; Nagamune, T.; Sasabe, H.; Inoue, Y.; Endo, I., FEBS Lett. 358 (1), 9-12; (b) Noguchi, T.; Hoshino, M.; Tsujimura, M.; Odaka, M.; Inoue, Y.; Endo, I., Biochemistry 1996, 35, 16777-16781; (c) Odaka, M.; Fujii, K.; Hoshino, M.; Noguchi, T.; Tsujimura, M.; Nagashima, S.; Yohda, M.; Nagamune, T.; Inoue, Y.; Endo, I., J. Am. Chem. Soc. 1997, 119, 3785-3791; (d) Tsujimura, M.; Dohmae, N.; Odaka, M.; Chijimatsu, M.; Takio, K.; Yohda, M.; Hoshino, M.; Nagashima, S.; Endo, I., J. Biol. Chem. 1997, 272, 29454-29459.
    27. Brown, G. C., Eur. J. Biochem. 1995, 232, 188-191.
    28. Fukuzumi, S.; Yorisue, T., Chem. Lett. 1990, 19, 871-874.
    29. Khin, C.; Heinecke, J.; Ford, P. C., J. Am. Chem. Soc. 2008, 130, 13830-13831.
    30. Einsle, O.; Messerschmidt, A.; Huber, R.; Kroneck, P. M. H.; Neese, F., J. Am. Chem. Soc. 2002, 124, 11737-11745.
    31. Hu, C.; Noll, B. C.; Schulz, C. E.; Scheidt, W. R., Inorg. Chem. 2007, 46, 619-621.
    32. Nasri, H.; Wang, Y.; Huynh Boi, H.; Scheidt, W. R., J. Am. Chem. Soc. 1991, 113, 717-719.
    33. Ching, W.-M.; Chuang, C.-H.; Wu, C.-W.; Peng, C.-H.; Hung, C.-H., J. Am. Chem. Soc. 2009, 131, 7952-7953.
    34. C. Prince, R.; Grossman, M. J., Trends Biochem. Sci. 1993, 18, 153-154.
    35. (a) Butler, A. R.; Megson, I. L., Chem. Rev. 2002, 102, 1155-1166; (b) Butler, A. R., J. Chem. Educ. 1982, 59, 549.
    36. (a) PREPARED IN COLLABORATION WITH. In Handbook of Preparative Inorg. Chem. (Second Edition), Brauer, G., Ed. Academic Press: 1965; p ii; (b) Seyferth, D.; Gallagher, M. K.; Cowie, M., Organometallics 1986, 5, 539-548; (c) Bladon, P.; Dekker, M.; Knox, G. R.; Willison, D.; Jaffari, G. A.; Doedens, R. J.; Muir, K. W., Organometallics 1993, 12, 1725-1741.
    37. Virta, M.; Karp, M.; Vuorinen, P., Antimicrob. Agents Chemother. 1994, 38, 2775-2779.
    38. Kosonen, O.; Kankaanranta, H.; Uotila, J.; Moilanen, E., Eur. J. Pharmacol. 2000, 394, 149-156.
    39. Bourassa, J.; DeGraff, W.; Kudo, S.; Wink, D. A.; Mitchell, J. B.; Ford, P. C., J. Am. Chem. Soc. 1997, 119 , 2853-2860.
    40. Kudo, S.; Bourassa, J. L.; Boggs, S. E.; Sato, Y.; Ford, P. C., Anal. Biochem.1997, 247, 193-202.
    41. Vanin, A. F., Biochemistry. Biokhimiia 1998, 63, 731-3.
    42. Bosworth, C. A.; Toledo, J. C.; Zmijewski, J. W.; Li, Q.; Lancaster, J. R., Proc. Natl. Acad. Sci.2009, 106, 4671-4676.
    43. (a) Tsai, F.-T.; Chen, P.-L.; Liaw, W.-F., J. Am. Chem. Soc. 2010, 132, 5290-5299; (b) Tsai, M.-C.; Tsai, F.-T.; Lu, T.-T.; Tsai, M.-L.; Wei, Y.-C.; Hsu, I. J.; Lee, J.-F.; Liaw, W.-F., Inorg. Chem. 2009, 48 (19), 9579-9591.
    44. Enemark, J. H.; Feltham, R. D., Coord. Chem. Rev. 1974, 13, 339-406.
    45. (a) Furuta, H.; Asano, T.; Ogawa, T., J. Am. Chem. Soc. 1994, 116, 767-768; (b) Chmielewski, P. J.; Latos-Grażyński, L.; Rachlewicz, K.; Głowiak, T., Angew. Chem. 1994, 106, 805-808; (c) Hiromitsu, M.; Hiroyuki, F., Pure and Applied Chemistry 2006, 78, 29-44; (d) Harvey, J. D.; Ziegler, C. J., Coord. Chem. Rev. 2003, 247, 1-19.
    46. (a) Chiang, C.-Y.; Darensbourg, M., J Biol Inorg Chem 2006, 11, 359-370; (b) Hsieh, C.-H.; J. Am. Chem. Soc. 2010, 132, 14118-14125; (c) Tonzetich, Z. J.; Héroguel, F.; Do, L. H.; Lippard, S. J., Inorg. Chem. 2011, 50, 1570-1579.
    47. Lagaditis, P. O.; Mikhailine, A. A.; Lough, A. J.; Morris, R. H., Inorg. Chem. 2010, 49, 1094-1102.
    48. Qiutian, D. Y. W. T. Z. H. C. C. L., Acta Chim. Sinica 1999, 57, 846-851.
    49. (a) Connelly, N. G.; Gardner, C., J. Chem. Soc., Dalton Trans. 1976, 16, 1525-1527; (b) Tsai, M.-L.; Chen, C.-C.; Hsu, I. J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Chen, J.-M.; Lee, J.-F.; Liaw, W.-F., Inorg. Chem. 2004, 43, 5159-5167; (c) Lin, Z.-S.; Chiou, T.-W.; Liu, K.-Y.; Hsieh, C.-C.; Yu, J.-S. K.; Liaw, W.-F., A Inorg. Chem. 2012, 51, 10092-10094.
    50. Tsai, F.-T.; Kuo, T.-S.; Liaw, W.-F., J. Am. Chem. Soc. 2009, 131, 3426-3427.
    51. (a) Duncan, C.; Dougall, H.; Johnston, P.; Green, S.; Brogan, R.; Leifert, C.; Smith, L.; Golden, M.; Benjamin, N., Nat Med 1995, 1, 546-551; (b) Lundberg, J. O.; Weitzberg, E.; Cole, J. A.; Benjamin, N., Nat Rev Micro 2004, 2, 593-602.
    52. Lundberg, J. O.; Weitzberg, E., Arterioscler., Thromb., Vasc. Biol. 2005, 25, 915-922.
    53. Sheldrick, G., Acta Crystallogr., Sect. A 2008, 64, 112-122.
    54. Gorbitz, C., Acta Crystallogr., Sect. B 1999, 55, 1090-1098.
    55. Geier, G. R.; Haynes, D. M.; Lindsey, J. S.,Org. Lett. 1999, 1, 1455-1458.
    56. Rachlewicz, K.; Wang, S.-L.; Ko, J.-L.; Hung, C.-H.; Latos-Grażyński, L., J. Am. Chem. Soc. 2004, 126, 4420-4431.
    57. McBride, D. W.; Stafford, S. L.; Stone, F. G. A., Inorg. Chem. 1962, 1, 386-388.
    1. (a) Von Nencki, M. S., N. , Arch. Exp. Pathol. Pharmakol. 1888, 24, 430; (b) Luzgina, V. N.; Filippovich, E. I.; Evstigneeva, R. P., Pharm Chem J 1977, 11 (5), 613-620.
    2. Fischer, H. H.-S. s. Z., Physiol. Chem. 1915, 95, 32.
    3. Shack, J. C., W. M., J. Biol. Chem. 1947, 171, 143.
    4. Winkelman, J. S., G.; Grossman, R. , J. Cancer. Res. 1967, 27, 2060.
    5. Zanelli, G. D. K., A. C., Br. J. Radiol. 1981, 54, 403.
    6. (a) Bonnett, R., Chem. Soc. Rev 1995, 24, 19; (b) Sternberg, E. D.; Dolphin, D.; Brückner, C., Tetrahedron 1998, 54 , 4151-4202.
    7. (a) Marzilli, L. G., Nwe J. Chem. 1990, 14, 409; (b) Lipscomb, L. A.; Zhou, F. X.; Presnell, S. R.; Woo, R. J.; Peek, M. E.; Plaskon, R. R.; Williams, L. D., Biochemistry 1996, 35, 2818-2823.
    8. Day, B. J.; Shawen, S.; Liochev, S. I.; Crapo, J. D., J. Pharmacol. Exp. Ther. 1995, 275, 1227-1232.
    9. (a) Pasternack, R. F.; Halliwell, B., J. Am. Chem. Soc. 1979, 101 , 1026-1031; (b) Ilan, Y.; Rabani, J.; Fridovich, I.; Pasternack, R. F., Inorg. Nucl. Chem. Lett. 1981, 17, 93-96.
    10. Batinic-Haberle, I.; Benov, L.; Spasojevic, I.; Fridovich, I., J. Biol. Chem. 1998, 273, 24521-24528.
    11. Batinić-Haberle, I.; Liochev, S. I.; Spasojević, I.; Fridovich, I., Arch. Biochem. Biophys. 1997, 343, 225-233.
    12. Caughey, W. S.; Raymond, L. D.; Horiuchi, M.; Caughey, B., Proc. Natl. Acad. Sci. 1998, 95, 12117-12122.
    13. Goldmacher, J.; Barton, L. A., J. Org. Chem. 1967, 32, 476-477.
    14. Wudl, F.; Allendoerfer, R. D.; Demirgian, J.; Robbins, J. M., J. Am. Chem. Soc. 1971, 93, 3160-3162.
    15. Sutter, T. P. G.; Hambright, P., Inorg. Chem. 1992, 31, 5089-5093.
    16. Datta-Gupta, N.; Malakar, D.; Jenkins, C.; Strange, C., Bull. Chem. Soc. Jpn. 1988, 61, 2274-2276.
    17. Lavallee, D. K.; Xu, Z.; Pina, R., J. Org. Chem. 1993, 58, 6000-6008.
    18. Buchler, J. W.; de Cian, A.; Fischer, J.; Katzenmeier, H.; Weiss, R., J. Inorg. Biochem 1995, 59, 349.
    19. Jin, R.-H.; Aoki, S.; Shima, K., Chem. Commun 1996, 16, 1939-1940.
    20. Krishnamurthy, M., Indian. J. Am. Chem. 1977, 15B, 964.
    21. Datta-Gupta, N.; Bardos, T. J., J. Heterocycl. Chem. 1966, 3, 495-502.
    22. Longo, F. R.; Finarelli, M. G.; Kim, J. B., J. Heterocycl. Chem. 1969, 6, 927-931.
    23. (a) Bruice, T. C., Acc. Chem. Res. 1991, 24, 243-249; (b) Sheldon, R. A., Marcel Dekker: New York, 1994; (c) Montavari, F. C., L., Metalloporphyrin Catalyzed Oxidations. Kluwer Academic Publications: New York, 1994.
    24. Grodkowski, J.; Behar, D.; Neta, P.; Hambright, P., I J. Phys. Chem. A 1997, 101, 248-254.
    25. Behar, D.; Dhanasekaran, T.; Neta, P.; Hosten, C. M.; Ejeh, D.; Hambright, P.; Fujita, E., J. Phys. Chem. A 1998, 102, 2870-2877.
    26. Trévin, S.; Bedioui, F.; Devynck, J., J. Electroanal. Chem. 1996, 408, 261-265.
    27. Bonnet, M. C.; Dahan, F.; Ecke, A.; Keim, W.; Schulz, R. P.; Tkatchenko, I., J. Chem. Soc., Chem. Commun. 1994, 5, 615-616.
    28. (a) Pasternack, R. F.; Lee, H.; Malek, P.; Spencer, C., J. Inorg. Nucl. Chem. 1977, 39, 1865-1870; (b) Korber, F. C. F.; Smith, J. R. L.; Prince, S.; Rizkallah, P.; Reynolds, C. D.; Shawcross, D. R., J. Chem. Soc., Dalton Trans. 1991, 12, 3291-3294; (c) La, T.; Richards, R. A.; Lu, R. S.; Bau, R.; Miskelly, G. M., Inorg. Chem. 1995, 34, 5632-5640; (d) La, T.; Miskelly, G. M.; Bau, R., Inorg. Chem. 1997, 36, 5321-5328; (e) Kirner, J. F.; Garofalo Jr, J.; Robert Scheidt, W., Inorg. Nucl. Chem. Lett. 1975, 11, 107-112.
    29. (a) Miskelly, G. M.; Webley, W. S.; Clark, C. R.; Buckingham, D. A., Inorg. Chem. 1988, 27, 3773-3781; (b) Thompson, A. N.; Krishnamurthy, M., Inorg. Chim. Acta 1979, 34, 145-150.
    30. Fleischer, E. B.; Palmer, J. M.; Srivastava, T. S.; Chatterjee, A., J. Am. Chem. Soc. 1971, 93, 3162-3167.
    31. Herrmann, O.; Mehdi, S. H.; Corsini, A., Can. J. Biochem. 1978, 56 , 1084-1087.
    32. (a) Pasternack, R. F.; Spiro, E. G.; Teach, M., J. Inorg. Nucl. Chem. 1974, 36, 599-606; (b) Lin, M.; Marzilli, L. G., Inorg. Chem. 1994, 33, 5309-5315.
    33. Abwao-Konya, J. C., A.; Jacobs, L.; Krishnamurthy, M.; Smith, M., Transition Met. Chem. 1984, 9, 270.
    34. Pasternack, R. F.; Francesconi, L.; Raff, D.; Spiro, E., Inorg. Chem. 1973, 12, 2606-2611.
    35. (a) Harriman, A.; Richoux, M. C.; Neta, P., J. Biophys. Chem. 1983, 87 , 4957-4965; (b) Cheung, S. K.; Dixon, F. L.; Fleischer, E. B.; Jeter, D. Y.; Krishnamurthy, M., Bioinorg. Chem 1973, 2, 281-294.
    36. Lindsey, J. S.; Woodford, J. N., Inorg. Chem. 1995, 34, 1063-1069.
    37. Valiotti, A.; Adeyemo, A.; Hambright, P., Inorg. Nucl. Chem. Lett. 1981, 17, 213-214.
    38. Szulbinski, W.; Lapkowski, M., Inorg. Chim. Acta 1986, 123, 127-131.
    39. Buchler, J. W. E., G.; Puppe, L.; Rohrbock. K.; Schneehange, H. H., Leibigs Ann. Chem. 1971, 745, 135.
    40. Ignarro, L. J., Nitric Oxide: Biology and Pathobiology. Academic Press: San Diego, 2000.
    41. Tsikas, D., Free Radical Res. 2005, 39, 797-815.
    42. Tsikas, D.; Gutzki, F.-M.; Stichtenoth, D., Eur J Clin Pharmacol 2006, 62, 51-59.
    43. Hogg, N., Annu. Rev. Pharmacol. Toxicol. 2002, 42, 585-600.
    44. Gladwin, M. T.; Schechter, A. N.; Kim-Shapiro, D. B.; Patel, R. P.; Hogg, N.; Shiva, S.; Cannon, R. O.; Kelm, M.; Wink, D. A.; Espey, M. G.; Oldfield, E. H.; Pluta, R. M.; Freeman, B. A.; Lancaster, J. R.; Feelisch, M.; Lundberg, J. O., Nat Chem Biol 2005, 1, 308-314.
    45. Stamler, J. S.; Jaraki, O.; Osborne, J.; Simon, D. I.; Keaney, J.; Vita, J.; Singel, D.; Valeri, C. R.; Loscalzo, J., Proc. Natl. Acad. Sci. 1992, 89, 7674-7677.
    46. Bryan, N. S.; Fernandez, B. O.; Bauer, S. M.; Garcia-Saura, M. F.; Milsom, A. B.; Rassaf, T.; Maloney, R. E.; Bharti, A.; Rodriguez, J.; Feelisch, M., Nat Chem Biol 2005, 1, 290-297.
    47. van Faassen, E. E.; Bahrami, S.; Feelisch, M.; Hogg, N.; Kelm, M.; Kim-Shapiro, D. B.; Kozlov, A. V.; Li, H.; Lundberg, J. O.; Mason, R.; Nohl, H.; Rassaf, T.; Samouilov, A.; Slama-Schwok, A.; Shiva, S.; Vanin, A. F.; Weitzberg, E.; Zweier, J.; Gladwin, M. T., Med. Res. Rev. 2009, 29, 683-741.
    48. (a) Nasri, H.; Ellison, M. K.; Shaevitz, B.; Gupta, G. P.; Scheidt, W. R., Inorg. Chem. 2006, 45, 5284-5290; (b) Wyllie, G. R. A.; Munro, O. Q.; Schulz, C. E.; Robert Scheidt, W., Polyhedron 2007, 26, 4664-4672.
    49. (a) Kurtikyan, T. S.; Gulyan, G. M.; Martirosyan, G. G.; Lim, M. D.; Ford, P. C., J. Am. Chem. Soc. 2005, 127, 6216-6224; (b) Kurtikyan, T. S.; Hovhannisyan, A. A.; Hakobyan, M. E.; Patterson, J. C.; Iretskii, A.; Ford, P. C., J. Am. Chem. Soc. 2007, 129 , 3576-3585; (c) Gulyan, G. M.; Kurtikyan, T. S.; Ford, P. C., Inorg. Chem. 2008, 47, 787-789; (d) Kurtikyan, T. S.; Martirosyan, G. G.; Hakobyan, M. E.; Ford, P. C., Chem. Commun 2003, 14, 1706-1707.
    50. Geier, G. R.; Haynes, D. M.; Lindsey, J. S., Org. Lett. 1999, 1, 1455-1458.
    51. Khairutdinov, R. F.; Serpone, N., J. Biophys. Chem. B 1999, 103, 761-769.
    52. Furuta, H.; Asano, T.; Ogawa, T., J. Am. Chem. Soc. 1994, 116, 767-768.
    53. Krishnamurthy, M., Inorg. Chim. Acta 1977, 25, 215-218.
    54. Ellison, M. K.; Schulz, C. E.; Scheidt, W. R., Inorg. Chem. 1999, 38, 100-108.
    55. Das, K. C.; Das, C. K., Biochem. Biophys. Res. Commun.2000, 277, 443-447.
    56. (a) Piciulo, P. L.; Rupprecht, G.; Scheidt, W. R., J. Am. Chem. Soc. 1974, 96, 5293-5295; (b) Scheidt, W. R.; Piciulo, P. L., J. Am. Chem. Soc. 1976, 98, 1913-1919.
    57. Scheidt, W. R.; Lee, Y. J.; Hatano, K., J. Am. Chem. Soc. 1984, 106, 3191-3198.
    58. Scheidt, W. R.; Brinegar, A. C.; Ferro, E. B.; Kirner, J. F., J. Am. Chem. Soc. 1977, 99, 7315-7322.
    59. Ellison, M. K.; Scheidt, W. R., J. Am. Chem. Soc. 1999, 121, 5210-5219.
    60. Nasri, H.; Ellison, M. K.; Chen, S.; Huynh, B. H.; Scheidt, W. R., J. Am. Chem. Soc. 1997, 119, 6274-6283.
    61. Goodrich, L. E.; Roy, S.; Alp, E. E.; Zhao, J.; Hu, M. Y.; Lehnert, N., Inorg. Chem. 2013, 52, 7766-7780.
    62. Richter-Addo, G. B.; Wheeler, R. A.; Hixson, C. A.; Chen, L.; Khan, M. A.; Ellison, M. K.; Schulz, C. E.; Scheidt, W. R., J. Am. Chem. Soc. 2001, 123, 6314-6326.
    63. Berto, T. C.; Praneeth, V. K. K.; Goodrich, L. E.; Lehnert, N., J. Am. Chem. Soc. 2009, 131, 17116-17126.
    64. Yi, G.-B.; Khan, M. A.; Richter-Addo, G. B., Inorg. Chem. 1997, 36, 3876-3885.
    65. Guilard, R.; Lagrange, G.; Tabard, A.; Lancon, D.; Kadish, K. M., Inorg. Chem. 1985, 24, 3649-3656.
    66. Wang, J.; Schopfer, M. P.; Puiu, S. C.; Sarjeant, A. A. N.; Karlin, K. D., Inorg. Chem. 2010, 49, 1404-1419.
    67. Wyllie, G. R. A.; Schulz, C. E.; Scheidt, W. R., Inorg. Chem. 2003, 42, 5722-5734.
    68. Lehnert, N.; Galinato, M. G. I.; Paulat, F.; Richter-Addo, G. B.; Sturhahn, W.; Xu, N.; Zhao, J., Inorg. Chem. 2010, 49, 4133-4148.
    69. Autret, M.; Will, S.; Caemelbecke, E. V.; Lex, J.; Gisselbrecht, J.-P.; Gross, M.; Vogel, E.; Kadish, K. M., J. Am. Chem. Soc. 1994, 116, 9141-9149.
    70. Nasri, H. H., K.; Wang, Y.; Hunyh, B. H.; Scheidt, W. R. , Inorg. Chem. 1997, 91.
    71. Wyllie, G. R. A.; Scheidt, W. R., Chem. Rev. 2002, 102, 1067-1090.
    72. Ellison, M. K.; Schulz, C. E.; Scheidt, W. R., Inorg. Chem. 2000, 39, 5102-5110.
    73. Ching, W.-M.; Chuang, C.-H.; Wu, C.-W.; Peng, C.-H.; Hung, C.-H., J. Am. Chem. Soc. 2009, 131, 7952-7953.
    74. Scheidt, W. R.; Duval, H. F.; Neal, T. J.; Ellison, M. K., J. Am. Chem. Soc. 2000, 122, 4651-4659.
    75. Hung, C.-H.; Ching, W.-M.; Chang, G.-F.; Chuang, C.-H.; Chu, H.-W.; Lee, W.-Z., Inorg. Chem. 2007, 46, 10941-10943.
    76. Pellegrino, J.; Bari, S. E.; Bikiel, D. E.; Doctorovich, F., J. Am. Chem. Soc. 2010, 132, 989-995.
    77. Nasri, H.; Haller, K. J.; Wang, Y.; Huynh Boi, H.; Scheidt, W. R., Inorg. Chem. 1992, 31, 3459-3467.
    78. Cosby, K.; Partovi, K. S.; Crawford, J. H.; Patel, R. P.; Reiter, C. D.; Martyr, S.; Yang, B. K.; Waclawiw, M. A.; Zalos, G.; Xu, X.; Huang, K. T.; Shields, H.; Kim-Shapiro, D. B.; Schechter, A. N.; Cannon, R. O.; Gladwin, M. T., Nat Med 2003, 9, 1498-1505.
    79. Gladwin, M. T.; Grubina, R.; Doyle, M. P., Acc. Chem. Res. 2008, 42, 157-167.
    80. (a) Einsle, O.; Messerschmidt, A.; Huber, R.; Kroneck, P. M. H.; Neese, F., J. Am. Chem. Soc. 2002, 124, 11737-11745; (b) Crane, B. R.; Siegel, L. M.; Getzoff, E. D., Biochemistry 1997, 36, 12120-12137; (c) Williams, P. A.; Fulop, V.; Garman, E. F.; Saunders, N. F. W.; Ferguson, S. J.; Hajdu, J., Nature 1997, 389, 406-412.
    81. Perissinotti, L. L.; Marti, M. A.; Doctorovich, F.; Luque, F. J.; Estrin, D. A., A Biochemistry 2008, 47, 9793-9802.
    82. Yi, J.; Safo, M. K.; Richter-Addo, G. B., Biochemistry 2008, 47, 8247-8249.
    83. Sheldrick, G., Acta Crystallogr., Sect. A 2008, 64, 112-122.
    84. Gorbitz, C., Acta Crystallogr., Sect. B 1999, 55, 1090-1098.

    QR CODE