簡易檢索 / 詳目顯示

研究生: 楊舜翔
Shun-Xiang Yang
論文名稱: 有機/無機混成分散劑穩定奈米銀粒子製備高導電薄膜及智慧衣感測元件之應用
Highly Electrically Conductive Films of Silver Nanoparticles Finely Dispersed in Organic/Inorganic Hybrid Surfactants for Smart Clothing
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 109
中文關鍵詞: 碳黑碳管奈米銀心電圖
外文關鍵詞: Carbon black, carbon tube, nano silver, electrocardiogram
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計新型三款聚異丁烯-醯亞胺(PIB-imide-PIB)高分子型分散劑,來比較奈米銀粒子的穩定,顯示PIB-ED2003-PIB對奈米銀粒子具有良好的穩定性,隨後添加零維材料及一維材料的有機/無機混成分散劑來穩定奈米銀粒子的探討。使用市售化碳黑及奈米碳管為分散劑,因碳黑及奈米碳管大多由多芳香族所組成,較為親油性,有良好的導電性。其中奈米銀粒子可經由有機高分子型分散劑及碳材以非共價作用力吸附而達到奈米分散及穩定,並進一步將分散液均勻塗佈/混合至高分子基材上及經過加熱程序,最終可以獲得高導電之薄膜材料(表面電阻約10-2 Ω/sq)。並利用聚醯亞胺薄膜(Polyimide ; PI)以及熱塑性彈性體(Thermoplastic Elastomer ; TPE)製備出軟性電極層與具可拉伸電極層並應用於智慧衣感測元件上。
    本研究成功製備出高導電奈米複合薄膜,此薄膜是藉由塗佈有機/無機奈米銀混成材料而來,其中奈米銀粒子經由有機材料為高分子型分散劑、無機材料為奈米碳黑及奈米碳管以非共價作用力吸附而達到分散及穩定,並進一步將分散液塗佈及加熱程序,最終可以獲得高導電之薄膜材料並成功量測出心電圖。


    We compare the stability of silver nano particles by using three types of PIB-imide-PIB polymer dispersant. The results come out that PIB-ED2003-PIB has great stability to silver nano particles. Then we add organic/inorganic hybrid dispersant contain zero-dimensional and one-dimensional material inside the dispersant, and study the stability of silver nano particles. We use carbon black and carbon nano tube as dispersant, because they have aromatic group, carbon black and carbon nano tube are hydrophobic and have great conductivity. In the experiment, silver nano particles can be nano dispersion and stability because of the non-covalent force of carbon material and organic polymer dispersant. We then coat the dispersions onto polymide with thermoplastic elastomer to make flexible electrode and stretchable electrode which can be applied to Sensing element of smart textile.
    We sucessfully prepare high conductivity nano composite film by coating organic/inorganic nano silver blending material. The silver nano particles we use was prepare by adding polymer dispersant as organic materials, and carbon black and carbon nano tube as inorganic materials to make silver nano particles dispersed and stable. Then we coat the dispersions onto polymer substrate and process heating. Finally we make high conductivity film and sucessfully measured ECG.

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 IX 表目錄 XIII 一、 前言與研究動機 1 1.1 前言 1 1.2 研究動機 1 二、 文獻回顧 3 2.1.2銀粒子的結構與特性 6 2.1.3奈米銀粒子製備方法 7 2.1.4銀鹽還原成奈米粒子的合成 8 2.2 分散劑 9 2.2.1分散劑介紹 9 2.2.2分散劑聚醚胺介紹 10 2.3 熱可塑性彈性體介紹 11 2.3.1熱塑性彈性體(TPE)定義 11 2.3.2橡膠與塑膠的基本性質 11 2.3.3 TPE的種類 12 2.4 碳材簡介 13 2.4.1 碳材料的演變 13 2.4.2 碳黑簡介 15 2.4.3碳黑結構及特性 15 2.4.4碳黑製造方法 19 2.4.5奈米碳管介紹 20 2.4.6奈米碳管結構及基本特性 21 2.4.7碳管製造方法 24 2.4.8成網門檻(Percolation threshold) 25 2.5智慧衣介紹 26 2.5.1歷史及發展 27 2.5.2智慧衣用途 29 2.5.3人體心電圖 29 2.6多層奈米碳管/銀相關文獻 30 三、 實驗 31 3.1實驗材料 31 3.2實驗設備 32 3.3實驗流程圖 33 3.4有機分散劑合成 34 3.4.1聚異丁烯-醯亞胺的合成( PIB-imide-PIB ) 34 3.4.2聚異丁烯-醯亞胺的合成( PIB-D400-PIB ) 34 3.4.1聚異丁烯-醯亞胺的合成( PIB-D2000-PIB ) 35 3.5有機分散劑選擇 35 3.6有機分散劑穩定奈米銀粒子合成 35 3.7碳黑複合溶液 36 3.7.1分散碳黑溶液製備 36 3.7.2奈米銀粒子/PIB-imide-PIB/碳黑溶液的製備 36 3.8多層奈米碳管複合溶液 37 3.8.1分散奈米碳管溶液製備 37 3.8.2奈米銀粒子/PIB-imide-PIB/奈米碳管溶液製備 37 3.9奈米銀混合溶液製備可撓曲高導電性複合薄膜 38 3.10奈米銀混合溶液製備TPE電極層 38 3.11 智慧衣的製備與量測 39 四、 結果與討論 43 Part1:有機分散劑系統 43 4.1.1聚異丁烯-醯亞胺的合成鑑定 ( PIB-imide-PIB ) 43 4.1.2聚異丁烯-醯亞胺的合成鑑定 ( PIB-D400-PIB ) 45 4.1.3聚異丁烯-醯亞胺的合成鑑定 ( PIB-D2000-PIB ) 48 Part2:碳黑/有機分散劑系統 53 4.2.1分散碳黑溶液 53 4.2.2奈米銀粒子/ PIB-imide-PIB /碳黑混合溶液的材料合成 54 4.2.3奈米銀粒子/ PIB-imide-PIB /碳黑之TEM圖及粒徑分佈 56 4.2.4碳黑複合材料之熱重分析 58 4.2.5製備奈米銀粒子/ PIB-imide-PIB /碳黑導電薄膜於PI膜 59 4.2.6場發射式電子顯微鏡(FESEM)觀察熔融後的奈米銀粒子導電連結的結構 60 4.2.7奈米銀粒子/PIB-imide-PIB/碳黑/PI電極層貼製備 62 4.2.8以熱塑性彈性體(TPE)混合製備導電薄膜 63 4.2.9不同含量對電阻值的影響 63 4.2.10 薄膜厚度不同對電阻值影響 64 4.2.11薄膜之機械性質極熱性質探討 64 4.2.12奈米銀粒子/PIB-imide-PIB/碳黑/TPE電極層貼製備 66 4.2.13人體訊號量測效果 67 Part3:奈米碳管/有機分散劑系統 71 4.3.1分散奈米碳管溶液 71 4.3.2奈米銀粒子/PIB-imide-PIB/奈米碳管混合溶液的材料合成 72 4.3.3 奈米銀粒子/ PIB-imide-PIB/奈米碳管混合溶液粒徑 74 4.3.4奈米碳管複合材料之熱重分析 76 4.3.5製備奈米銀粒子/ PIB-imide-PIB/奈米碳管導電薄膜於PI膜 77 4.3.6場發射式電子顯微鏡(FESEM)觀察熔融後的奈米銀粒子導電連結的結構 78 4.3.7奈米銀粒子/PIB-imide-PIB/奈米碳管/PI電極層貼製備 80 4.3.8以熱塑性彈性體(TPE)混合製備導電薄膜 80 4.3.9不同含量對電阻值的影響 81 4.3.10 薄膜厚度不同對電阻值影響 81 4.3.11薄膜之機械性質極熱性質探討 82 4.3.12奈米銀粒子/PIB-imide-PIB/奈米碳管/TPE電極層貼製備 84 4.3.13人體訊號量測效果 85 五、 結論 89 六、 參考文獻 90

    Untereker, D.; Lyu, S.; Schley, J.; Martinez, G.; Lohstreter, L. Maximum Conductivity of Packed Nanoparticles and Their Polymer Composites. ACS Appl. Mater. Interfaces. 2009, 1, 97–101.
    2. Qi, S.; Wu, Z.; Wu, D.; Wang, W.; Jin, R. Double-Surface-Silvered Polyimide Films Prepared via a Direct Ion-Exchange Self-Metallization Process. Chem. Mater. 2007, 19, 393–401.
    3. Jiang, H.; Moon, K.; Hua, F.; Wong, C. P. Synthesis and Thermal and Wetting Properties of Tin/Silver Alloy Nanoparticles for Low Melting Point Lead-Free Solders. Chem. Mater. 2007, 19, 4482–4485.
    4. Kuznetsova, A.; Popova, I.; Yates, J. T.; Bronikowski, M. J.; Huffman, C. B.; Liu, J.; Smalley, R. E.; Hwu, H. H.; Chen, J. G., Journal of the American Chemical Society, (2001) 123, 10699.
    5. Kuznetsova, A.; Mawhinney, D. B.; Naumenko, V.; Yates Jr, J. T.; Liu, J.; Smalley, R. E., Chemical Physics Letters, (2000) 321, 292.
    6. Wang, T.; Hu, X.; Qu, X.; Dong, S., The Journal of Physical Chemistry B, (2006) 110, 6631.
    7. Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green, M. L. H., Nature, (1994) 372, 159.
    8. Wang, T.; Hu, X.; Qu, X.; Dong, S., The Journal of Physical Chemistry B, (2006)110, 6631.
    9. Tomalia, D. A. et al. Step & flash imprint lithography. Materials Today 2005, 8, 34.
    10. Ozin,G.A.; Nanochemistry: Synthesis in diminishing dimensions, Adv.Mater, 1992, 4,612-649.
    11. Wegner, K.; Walker, B.; Tsantilis, S.; Pratsinis, S. E. Design of Metal Nanoparticle Synthesis by Vapor Flow Condensation. Chemical Engineering Science, 2002, 57, 1753–1762.
    12. Chen, C. C.; Yeh, C. C. Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires. Advanced Materials, 2000, 12, 738–741.
    13. Ma, H.; Yin, B.; Wang, S.; Jiao, Y.; Pan, W.; Huang, S.; Chen, S.; Meng, F. Synthesis of Silver and Gold Nanoparticles by a Novel Electrochemical Method. ChemPhysChem, 2004, 24, 68–75.
    14. Jin, R.; Cao, Y. C.; Hao, E.; Metraux, G. S.; Schatz, G. C. & Mirkin, C. A. Controlling Anisotropic Nanoparticle Growth Through Plasmon Excitation. Nature, 2003, 425,487–490.
    15. Chou, K. S.; Ren, C. Y.; Synthesis of Nanosized Silver Particles by Chemical Reduction Method. Materials Chemistry and Physics, 2002, 64,241–246.
    16. Caswell, K. K.; Bender, C. M.; Murphy, C. J. Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires. Nano Letters. 2003, 3, 667–669.
    17. Pillai, Z. S.; Kamat, P. V. What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method. The Journal of Physical Chemistry B, 2004, 108, 945–95.
    18. Kurihara, L.K.; Chow, G. M.; Schoen, P. E. Nanocrystalline Metallic Powders and Films Produced by the Polyol Method. NanaShuchued Materials, 1995, 5, 607–613.
    19. Pastoriza-Santos, I. ; Liz-Marzan, L. M. Synthesis of Silver Nanoprisms in DMF. Nano Letters, 2000, 2, 903–905.
    20. Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science, 2002, 298, 2176–2179.
    21. Komarneni, S.; Li, D.; Newalkar, B.; Katsuki, H.; Bhalla, A. S. Microwave-Polyol Process for Pt and Ag Nanoparticles. Langmuir, 2002, 18, 5959–5962.
    22. Sondi, I.; Goia, D. V.; Matijevic, E. Preparation of Highly Concentrated Stable Dispersions of Uniform Silver Nanoparticles. Journal of Colloid and Interface Science, 2003, 260, 75–81.
    23. Pastoriza-santos I.; Liz-marzan m, Formatiom and stabilization of Silver Nanoparticles through Reduction by N,N-Dimethylformamide, Langmuir, 1999 , 15, 948-951.
    24. 趙承琛博士編著,“界面科學基礎”,民國八十八年二月十八版,復文書局。
    25. Harries, J. M.; Ed. Poly(ethylene glycol) chemistry: biotechnical and biomedical applications, New York, Plenum Press, 1992.
    26. X. Liu, T. Wang, J. Li, J. Cheng, and J. Zhang, "Synthesis and properties of segmented polyurethanes with hydroquinone ether derivatives as chain extender," Journal of Polymer Research, vol. 22, no. 8, 2015.
    27. Iijima, S. Helical microtubules of graphitic carbon, Nature, 1991, 354, 56.
    28. Ganin, A. Y.; Takabayashi, Y.; Khimyak, Y. Z.; Margadonna, S.; Tamai, A.; Rosseinsky, M. J.; Prassides, K. Bulk superconductivity at 38 K in a molecular system. Nature Materials, 2008, 7, 367.
    29. Geim, A. K. ; Kim, P.; Graphene, a newly isolated form of carbon, provides a rich lode of novel fundamental physics and practical application, Scientific American, 2008 , 298, 90-97.
    30. Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat Nano, 2008, 3,270-274.
    31. Geim, A.K.; K. S. Novoselove, The rise of graphene, Nat Mater, 2007, 6, 183-191.
    32. 謝立生, "碳黑物性與應用入門," 高分子期刊, pp. P.51-P.58.
    33. 陳俊勳,"生物可分解高分子正溫度係數效應之研究,"碩士論,國立臺北科技大學有機高分子研究所,台北,2006.
    34. 謝立生,高分子工業,第77期,1998,P51-56.
    35. 陳佳莉,全球碳黑產業現況,台灣工業銀行,2007.
    36. J. Accorsi and E. Romero, "Additives: special carbon blacks for plastics," Plastics engineering, vol. 51, no. 4, pp. 29-32, 1995.
    37. 馬振基,奈米材料科技原理與應用,全華科技圖書股份有限公司.
    38. Accorsi J.Romero E.,Plastics Engineering.4,1995,pp.29-32.
    39. 張佐光,"功能複合材料",新材料與應用技術叢書,2006.
    40. 郭德興,"碳黑與高分子相容性探討”,碩士學位論文,台北科技大學有機高分子所,台北,2002.
    41. 張柏生,"共混高聚物-碳黑複合材料的導電規律",現在塑料加工應用,8卷,3期,59-62頁,1996.
    42. Gao,S.; Häßler, R.; Mäder, E.; Bahners, T.; Opwis, K.;Schollmeyer,E.,Applied Physics B: Lasers and Optics,(2005)81,681.
    43. C.Journet,P. Bernier,Applied Physics A 1998,67,169.
    44.Y. Ando,X. Zhao,K.Hirahara,K.Suenaga,S.Bandow,S.Iijima,Chemical Physics Letters 2000,323,580.
    45. Y. Ando,X. Zhao,K.Hirahara,K.Suenaga,S.Bandow,S.Iijima, Diamond and Related Materials 2001,10,1185
    46. Z.shi,Y.Lian,X.Zhou,Zhang,S.Iijima,Zhou,K.T.Yue,S.Z hang,Carbon 1999,37,1449
    47. M. Q. Zhang, G. Yu, H. M. Zeng, H. B. Zhang, and Y. H. Hen, "Two-step percolation in polymer blends filled with carbon black,"(in English), Macromolecules, Article vol. 31, no. 19, pp.6724-6726, Sep 1998.
    48. S. Park and S. Jayaraman, "Smart textiles: Wearable electronic systems," MRS bulletin, vol. 28, no. 08, pp. 585-591, 2003.
    49. A. D. Waller, "A demonstration on man of electromotive changes accompanying the heart's beat," The Journal of physiology, vol. 8, no. 5, p. 229, 1887.
    50. M. K. Yapici, A. A. Tamador, Y. A. Samad, and K. Liao, "Graphene-clad textile electrodes for electrocardiogram monitoring," Sensors and Actuators B-Chemical, vol. 221, pp. 1469-1474, Dec 2015.

    無法下載圖示 全文公開日期 2023/07/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE