簡易檢索 / 詳目顯示

研究生: 黃奕鈞
I-Chun Huang
論文名稱: 結合抗干擾及追跡之雙驅動系統控制與驗證
Dual Stage Actuator Control System for Disturbance Rejection and Tracking
指導教授: 張以全
I-Tsyuen Chang
口試委員: 張以全
I-Tsyuen Chang
陳亮光
Liang-Kuang Chen
藍振洋
Chen-yang Lan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 94
中文關鍵詞: 雙驅動器系統系統鑑定飽和問題獨立通道設計干擾觀測器
外文關鍵詞: DSA system, System identification, Saturation problem, Individual Channel Design, Disturbance Observer
相關次數: 點閱:290下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討雙驅動系統的追跡定位及抗干擾,本文首先推導雙驅動系統(Dual-Stage Actuator system)之數學模型,接著將本文之數學模型以Smith-McMillan Form表示,並討論雙驅動系統之特性。經由實驗以不同赫茲的正弦訊號輸入找出相對應的輸出振幅大小以及相位角度,構築出實際系統波德圖來換算出雙驅動系統的內部參數(彈簧阻尼係數),且利用獨立通道設計方法(Individual Channel Design,ICD)對系統進行解偶。並對於不同特性的驅動器設計不同的控制器來達到期望之追跡表現。最後加入不同比重的干擾觀測器(DOB)抑制系統在追跡過程中所受到的干擾,並對於結果進行分析。文末提供結論與討論未來研究之方向。


    This thesis focuses on the tracking and disturbance rejection of a dual-stage actuator system. The mathematical model of the dual-stage actuator system is derived and represented in the Smith-McMillan Form, allowing for the characterization of the system's properties. Through experiments using sinusoidal signals of varying frequencies, the corresponding amplitudes and phase angles are measured to construct the actual system's Bode plot and estimate the internal parameters of the dual-stage actuator system (spring and damping coefficients). The Individual Channel Design (ICD) method is employed to decouple the system by designing different controllers for actuators with different characteristics to achieve the desired tracking performance. Furthermore, the impact of incorporating disturbance observers with different weighting factors on suppressing disturbances during the tracking process is analyzed. The study concludes with a discussion of the findings and suggestions for future research directions.

    AbstractinChinese.................................. I AbstractinEnglish .................................. II Acknowledgements.................................. III Contents........................................ IV ListofFigures..................................... VII VII ListofTables ..................................... XI Listofabbreviation .................................. XII 1 Introduction.................................... 1 1.1 IntroductiontoDualStageActuator .................... 1 1.2 Background................................. 2 1.3 LiteratureReview.............................. 4 1.4 OptimalControl............................... 9 1.4.1 Costfunction............................ 10 1.4.2 LinearQuadraticRegulator(LQR)................. 11 1.4.3 KalmanObserver.......................... 12 1.5 The Impact of Disturbances on the Precision Motion of DSA . . . . . . . 13 1.5.1 Frictioncompensationmethods .................. 16 2 DSASystemModeling .............................. 17 2.1 MathematicalModelDerivation ...................... 17 2.2 DSAParameterAnalysis .......................... 19 2.3 PolesandZerosofDSAModel....................... 20 2.4 SystemSetup ................................ 22 2.4.1 DSASystemServoPlatformSetup ................ 23 2.4.2 ServoMotorandDriver ...................... 24 2.4.3 VoiceCoilMotorandDriver.................... 25 2.4.4 LinearEncoder........................... 26 2.4.5 ExperimentalHardware ...................... 27 3 FeedbackControllerDesignandAnalysis .................... 28 3.1 FeedbackControlSchemeofDSASystem................. 28 3.2 IndividualChannelDesign ......................... 29 3.3 PIControllerDesign ............................ 29 3.4 LQRControllerDesign........................... 30 3.4.1 StateObserver ........................... 33 3.5 DisturbanceObserver............................ 36 3.5.1 Low-PassFilterDesign....................... 37 4 ExperimentalResultsandAnalysis........................ 39 4.1 SystemIdentification ............................ 39 4.1.1 FrequencyResponse ........................ 39 4.1.2 ServoMotorModelValidation................... 40 4.1.3 VoiceCoilMotorModelValidation ................ 44 4.2 DSAControllerParameterDesign ..................... 48 4.2.1 Coarse Actuator Controller Parameter Design . . . . . . . . . . . 49 4.3 SystemResponsewithDifferentControllerValue . . . . . . . . . . . . . 50 4.3.1 Impact of Different Values for q1 in LQR Controllers . . . . . . . 52 4.3.2 Impact of Different Values for q2 in LQR Controllers . . . . . . . 54 4.3.3 Impact of Different Values for N in LQR Controllers . . . . . . . 57 4.4 System Response with Disturbance Observer Integration . . . . . . . . . 59 4.4.1 System Response with Half-Output Disturbance Observer(HDOB) 63 5 ConclusionandFutureWork ........................... 66 5.1 Conclusion ................................. 66 5.2 FutureWork................................. 67 References....................................... 68 AppendixA:DSAmodelDerivaion.......................... 72 AppendixB:Smith-McMillanForm ......................... 75

    [1] R. Horowitz, Y. Li, K. Oldham, S. Kon, and X. Huang, “Dual-stage servo sys- tems and vibration compensation in computer hard disk drives,” Control Engineering Practice, vol. 15, no. 3, pp. 291–305, 2007.
    [2] K. Peng, B. M. Chen, T. H. Lee, and V. Venkataramanan, “Design and implemen- tation of a dual-stage actuated hdd servo system via composite nonlinear control approach,” Mechatronics, vol. 14, no. 9, pp. 965–988, 2004.
    [3] T. Tuma, W. Haeberle, H. Rothuizen, J. Lygeros, A. Pantazi, and A. Sebastian, “Dual-stage nanopositioning for high-speed scanning probe microscopy,” IEEE/ ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 1035–1045, 2014.
    [4] S.Ito,J.Steininger,andG.Schitter,“Low-stiffnessdualstageactuatorforlongrage positioning with nanometer resolution,” Mechatronics, vol. 29, pp. 46–56, 2015.
    [5] B.Armstrong-Hélouvry,P.Dupont,andC.C.DeWit,“Asurveyofmodels,analysis tools and compensation methods for the control of machines with friction,” Automat- ica, vol. 30, no. 7, pp. 1083–1138, 1994.
    [6] G. Guo, D. Wu, and T. Chong, “Modified dual-stage controller for dealing with secondary-stage actuator saturation,” IEEE Transactions on Magnetics, vol. 39, no. 6, pp. 3587–3592, 2003.
    [7] C. W. Lee and S. M. Suh, “Model prediction based dual-stage actuator control in discrete-time domain,” IEEE Transactions on Magnetics, vol. 47, no. 7, pp. 1830– 1836, 2011.
    [8] C. Kempf and S. Kobayashi, “Disturbance observer and feedforward design for a high-speed direct-drive positioning table,” IEEE Transactions on Control Systems Technology, vol. 7, no. 5, pp. 513–526, 1999.
    [9] H. Butler, “Position control in lithographic equipment [applications of control],” IEEE Control Systems Magazine, vol. 31, no. 5, pp. 28–47, 2011.
    [10] M. Kobayashi and R. Horowitz, “Track seek control for hard disk dual-stage servo systems,” IEEE Transactions on Magnetics, vol. 37, no. 2, pp. 949–954, 2001.
    [11] M. Kobayashi, S. Nakagawa, and S. Nakamura, “A phase-stabilized servo con- troller for dual-stage actuators in hard disk drives,” IEEE Transactions on Magnetics, vol. 39, no. 2, pp. 844–850, 2003.
    [12] X.Huang,R.Nagamune,andR.Horowitz,“Acomparisonofmultiraterobusttrack- following control synthesis techniques for dual-stage and multisensing servo systems in hard disk drives,” IEEE Transactions on Magnetics, vol. 42, no. 7, pp. 1896–1904, 2006.
    [13] B.-j. Hou, J.-s. Gao, and Y.-f. Zhou, “The development of an ultra-precision dual- stage based on a master-slave control system,” in 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CD- CIEM), pp. 727–730, IEEE, 2012.
    [14] A. T. Salton, Z. Chen, J. Zheng, and M. Fu, “Constrained optimal preview control of dual-stage actuators,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 1179–1184, 2016.
    [15] L. Wang, J. Zheng, and M. Fu, “Optimal preview control of a dual-stage actuator system for triangular reference tracking,” IEEE Transactions on Control Systems Technology, vol. 22, no. 6, pp. 2408–2416, 2014.
    [16] U.Boettcher,B.Raeymaekers,R.A.deCallafon,andF.E.Talke,“Dynamicmodel- ing and control of a piezo-electric dual-stage tape servo actuator,” IEEE Transactions on Magnetics, vol. 45, no. 7, pp. 3017–3024, 2009.
    [17] D. Hernandez, S.-S. Park, R. Horowitz, and A. K. Packard, “Dual-stage track- following servo design for hard disk drives,” in American Control Conference, 1999. Proceedings of the 1999, vol. 6, pp. 4116–4121, IEEE, 1999.
    [18] J. Ding, M. Tomizuka, and H. Numasato, “Design and robustness analysis of dual stage servo system,” in Proceedings of the 2000 American Control Conference, vol. 4, pp. 2605–2609, IEEE, 2000.
    [19] R. A. De Callafon, R. Nagamune, and R. Horowitz, “Robust dynamic modeling and control of dual-stage actuators,” IEEE Transactions on Magnetics, vol. 42, no. 2, pp. 247–254, 2006.
    [20] R. Nagamune, X. Huang, and R. Horowitz, “Robust control synthesis techniques for multirate and multisensing track-following servo systems in hard disk drives,” Journal of dynamic systems, measurement, and control, vol. 132, no. 2, p. 021005, 2010.
    [21] D. Wei and J. Yang, “Design and simulation for dual-stage actuator systems with multi-rate and friction compensation controller,” in Proceedings of the 10th World Congress on Intelligent Control and Automation, pp. 245–250, 2012.
    [22] D. Kim, K.-T. Nam, S. H. Ji, and S. M. Lee, “Modeling of a dual actuator system and its control algorithm preventing saturation of fine actuator,” in 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 530–535, 2011.
    [23] H. Li, C. Du, and Y. Wang, “Optimal reset control for a dual-stage actuator system in hdds,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 3, pp. 480–488, 2011.
    [24] C. Canudas de Wit, H. Olsson, K. Astrom, and P. Lischinsky, “A new model for control of systems with friction,” IEEE Transactions on Automatic Control, vol. 40, no. 3, pp. 419–425, 1995.
    [25] S. J. Schroeck, W. C. Messner, and R. J. McNab, “On compensator design for lin- ear time-invariant dual-input single-output systems,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 1, pp. 50–57, 2001.
    [26] S. Hosoe, “On a time-domain characterization of the numerator polynomials of the smith mcmillan form,” IEEE Transactions on Automatic Control, vol. 20, no. 6, pp. 799–800, 1975.
    [27] D. N. Mohsenizadeh, L. H. Keel, and S. P. Bhattacharyya, “Multivariable controller synthesis using siso design methods,” in 2015 54th IEEE Conference on Decision and Control (CDC), pp. 2680–2685, IEEE, 2015.
    [28] C.E.Ugalde-Loo,E.Licéaga-Castro,andJ.Licéaga-Castro,“2x2individualchannel design matlab® toolbox,” in Proceedings of the 44th IEEE Conference on Decision and Control, pp. 7603–7608, IEEE, 2005.
    [29] J. O’reilly and W. Leithead, “Multivariable control by ‘individual channel design’,” International Journal of Control, vol. 54, no. 1, pp. 1–46, 1991.
    [30] W. Leithead and J. O’REILLY, “m-input m-output feedback control by individual channel design part 1. structural issues,” International Journal of Control, vol. 56, no. 6, pp. 1347–1397, 1992.
    [31] D. G. Luenberger, “Observing the state of a linear system,” IEEE Transactions on Military Electronics, vol. 8, no. 2, pp. 74–80, 1964.
    [32] R.E.Kalman,“Anewapproachtolinearfilteringandpredictionproblems,”Journal of basic engineering, vol. 82, no. 1, pp. 35–45, 1960.
    [33] T. Umeno and Y. Hori, “Robust speed control of dc servomotors using modern two degrees-of-freedom controller design,” IEEE Transactions on Industrial Electronics, vol. 38, no. 5, pp. 363–368, 1991.
    [34] D. Wei and J. Yang, “Design and simulation for dual-stage actuator systems with multi-rate and friction compensation controller,” in Proceedings of the 10th World Congress on Intelligent Control and Automation, pp. 245–250, 2012.

    無法下載圖示 全文公開日期 2026/08/11 (校內網路)
    全文公開日期 2026/08/11 (校外網路)
    全文公開日期 2026/08/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE