簡易檢索 / 詳目顯示

研究生: 張水文
CHANG, SHUI-WEN
論文名稱: 整合數位分身與先進製程控制技術於電路板雷射鑽孔製程控制
Integrating digital twin and advanced process control on laser drilling process control in PCB manufacturing
指導教授: 王孔政
Kung-Jeng Wang
陳炤彰
Chao-Chang A. Chen
口試委員: 陳炤彰
Chao-Chang A. Chen
江行全
Bernard-C. Jiang
王孔政
Kung-Jeng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 高階科技研發碩士學位學程
Executive Master of Research and Development
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 62
中文關鍵詞: 智慧製造批次控制數位分身機器學習
外文關鍵詞: Smart manufacturing, batch control, digital twin, machine learning
相關次數: 點閱:286下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在 PCB 產品實現流程中,前後製程間具有高度依存關係,其生產節拍也因此受到前後生產料件品質變異、設備穩定、技術參數等製造因素的制約。生產過程中資訊無法即時掌握,當有異常狀況發生未能即時發現時,更造成重大報廢損失。因此,跨領域整合各技術優點,開發一個更有效率、更具智慧的製造系統,以高效率可靠的方式擷取製造設備的資料;提前偵測潛在的異常,以提供製程管制之決策,為當務之急。本論文由智慧製造的觀點,提出一個架構在先進製程控制與數位分身概念為基礎,以 PCB 高密度互連技術之關鍵製程為研究對象。建構雷射鑽孔機的“數位分身”,透過批次控制模型與機器學習演算法使得設備具備自我預測與監控能力之新功能。經實際應用在雷射鑽製程進行離線模擬實驗,結果顯示: 即時監控上工程之前饋數據、機台參數與預測產品品質特性值, 達成線上實時檢查之目標,藉以避免因為量測或檢查延遲而造成機台等待或品質失效。


    In the PCB process, the process between the upstream and the downstream is highly dependency, the production pace is constrained by manufacturing factors such as product quality variation, equipment stability, and technical parameters. When there is an abnormal situation and information in the production process that cannot be
    immediately discovered, it will cause significant loss of scrap. Therefore,
    cross-domain integration of various technical advantages to develop a more efficient
    and intelligent manufacturing system, the efficient and reliable way to capture the data form manufacturing equipment; detect potential anomalies in advance to provide
    process control decisions.
    This study is based on smart manufacturing, and proposes an architecture that
    integrate the concepts of Advanced Process Control (APC) and Digital Twin (DT) on
    the key process of PCB. The “Digital Twin” of the laser drilling machine is built, and has the new function of self-predicting and monitoring capability through batch control (R2R) model and machine learning algorithm. After the actual application in the laser drilling process for offline simulation experiments, the results show: Real time monitoring the feed forward data and machine parameters and predict product quality characteristics to achieve the goal of online inspection, and avoid machine waiting or quality failure due to measurement or inspection delay.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 本論文架構 4 第二章 文獻回顧 6 2.1 批次控制 6 2.2 智慧製造與虛實整合系統 (CPS) 9 2.3 虛實整合系統 (CPS) 定義 13 2.4 建構虛實整合系統 14 2.5 數位分身的起源 18 2.6 數位分身的定義 19 2.7 數位分身在製造領域應用 20 2.8 小結 25 第三章 雷射鑽孔製程介紹 27 3.1 高密度互連技術 27 3.2 雷射應用的選擇 28 3.3 雷射直接鑽孔製程 29 3.4 雷射鑽孔機介紹 30 3.5 雷射加工參數設計與品質特性 35 第四章 研究方法與系統建構 36 4.1 研究架構 36 4.2 研究方法與步驟 37 4.3 建立批次控制模型 49 4.4 雷射鑽孔機數位分身控制系統架構 50 第五章 模擬結果與討論 52 5.1 模擬結果 52 5.2 討論 55 第六章 結論與未來發展建議 57 6.1 結論 57 6.2 研究限制 58 6.3 未來發展建議 59 參考文獻 60

    Anderl, R. (2014). Industrie4.0-Advanced Engineering of Smart Products and Smart Production.
    Cai, Y., Starly, B., Cohen, P., & Lee, Y.-S. (2017). Sensor Data and Information Fusion to Construct Digital-twins Virtual Machine Tools for Cyber-physical anufacturing. Procedia Manufacturing, 10, 1031-1042. doi:10.1016/j.promfg.2017.07.094
    Campbell, W. J., Firth, S. K., Toprac, A. J., & Edgar, T. F. (2002). A comparison of run-to-run control algorithms. 2150-2155 vol.2153.doi:10.1109/acc. 2002.1023955
    Castillo, E. D., Hurwitz, & M, A. (1997). Run-to-Run Process Control: Literature Review and Extensions. Journal of Quality Technology, 29, 184-196.
    Duane S. Boning, William P. Moyne, Taber H. Smith, James Moyne, Roland Telfeyan, Arnon Hurwitz, . . . Taylor, J. (1996). Run by Run Control of Chemical-Mechanical Polishing. IEEE Access, 19(4).
    Emanuel Sachs, Albert Hu, & Ingolfsson, A. (1995). Run by Run Process Control Combining SPC and Feedback Control. IEEE Access, 8(1).
    Galaske, N., Strang, D., & Anderl, R. (2015). Process Deviations in Cyber-Physical Production Systems. WCECS, 2.
    Grieves, M. (2014). Digital Twin: Manufacturing Excellence through Virtual Factory Replication.
    Grieves, M., & Vickers, J. (2017). Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. 85-113. doi:10.1007/ 978-3-319-38756-7_4
    Kao, H.-A., Jin, W., Siegel, D., & Lee, J. (2015). A Cyber Physical Interface for Automation Systems—Methodology and Examples. Machines, 3(2), 93-106. doi:10.3390/machines3020093
    Kim, S., & Park, S. (2017). CPS(Cyber Physical System) based Manufacturing System Optimization.
    Landset, S., Khoshgoftaar, T. M., Richter, A. N., & Hasanin, T. (2015). A survey of open source tools for machine learning with big data in the Hadoop ecosystem. Journal of Big Data, 2(1). doi:10.1186/s40537-015-0032-1
    Lee, J., Bagheri, B., & Kao, H.-A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23. doi:10.1016/j.mfglet.2014.12.001
    Lee, J., Jin, C., & Bagheri, B. (2017). Cyber physical systems for predictive production systems. Production Engineering, 11(2), 155-165. doi:10.1007/ s11740-017-0729-4
    Leng, J., Zhang, H., Yan, D., Liu, Q., Chen, X., & Zhang, D. (2018). Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. Journal of Ambient Intelligence and Humanized Computing. doi:10.1007/s12652-018-0881-5
    Luo, W., Hu, T., Zhu, W., & Tao, F. (2018). Digital Twin modeling method for CNC machine tool.
    Mabkhot, M., Al-Ahmari, A., Salah, B., & Alkhalefah, H. (2018). Requirements of the Smart Factory System: A Survey and Perspective. Machines, 6(2), 23. doi:10.3390/machines6020023
    Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., . . . Ueda, K. (2016). Cyber-physical systems in manufacturing. CIRP Annals, 65(2), 621-641. doi:10.1016/j.cirp.2016.06.005
    Negri, E., Fumagalli, L., & Macchi, M. (2017). A Review of the Roles of Digital Twin in CPS-based Production Systems. Procedia Manufacturing, 11, 939-948. doi:10.1016/j.promfg.2017.07.198
    OKADA, J., OKAMOTO, Y., SHUDO, K., & YOROZU, M. (2012). Modeling of Cu Direct Laser Drilling Process. JLMN-Journal of Laser Micro/ Nanoengineering, 7(3).
    Qi, Q., & Tao, F. (2018). Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access, 6, 3585-3593. doi:10.1109/access.2018.2793265
    Qin, J., Liu, Y., & Grosvenor, R. (2016). A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia CIRP, 52, 173-178. doi:10.1016/j.procir.2016.08.005
    Rosen, R., Wichert, G. v., Lo, G., & Bettenhausen, K. D. (2015). About The Importance of Autonomy and Digital Twins for the Future of Manufacturing. (IFAC), 567-572
    Sun, H., Li, C., Fang, X., & G, H. (2017). Optimized throughput improvement of assembly flow line with digital twin online analytics. IEEE Access.
    Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2017). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9-12), 3563-3576. doi:10.1007/s00170-017-0233-1
    Tao, F., & Zhang, M. (2017). Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing. IEEE Access, 5, 20418-20427. doi:10.1109/access.2017.2756069
    Vachálek, J., Bartalský, L., Rovný, O., & Šišmišová, D. ( 2017). The Digital Twin of an Industrial Production Line Within the Industry 4.0 Concept. IEEE Access.
    Yang, W., Yoshida, K., & Takakuwa, S. (2017). Digital Twin-Driven Simulation for a Cyber-Physical System in Industry 4.0 Era. 16, 227-234. doi:10.2507/daaam.scibook.2017.18
    Zhang, H., Zhang, G., & Yan, Q. (2018). Dynamic Resource Allocation Optimization for Digital Twin-driven Smart Shopfloor. IEEE Access.
    Zhuang, C., Liu, J., & Xiong, H. (2018). Digital twin-based smart production management and control framework for the complex product assembly shop-floor. The International Journal of Advanced Manufacturing Technology. doi:10.1007/s00170-018-1617-6
    陳勇仁, & 林昭文. (2011). 532nm Nd:YAVO4 雷射於環氧樹脂成型晶圓鑽盲孔技 術之研究. 工程科技與教育學刊 , 第八卷 第三期 , 415~427.

    無法下載圖示 全文公開日期 2024/06/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE