簡易檢索 / 詳目顯示

研究生: Ardila Hayu Tiwikrama
Ardila Hayu Tiwikrama
論文名稱: 含超臨界二氧化碳或甲烷之水溶液混合物的相平衡邊界研究
Phase Equilibrium Boundaries of Aqueous Mixtures Containing Supercritical Carbon Dioxide or Methane
指導教授: Ming-Jer Lee
Ming-Jer Lee
口試委員: David Shan-Hill Wong
David Shan-Hill Wong
Li-Jen Chen
Li-Jen Chen
Chie-Shaan Su
Chie-Shaan Su
Hsien-Tsung Wu
Hsien-Tsung Wu
Hao-Yeh Lee
Hao-Yeh Lee
Ming-Jer Lee
Ming-Jer Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 223
中文關鍵詞: phase equilibrium analyzer (PEA)carbon dioxidemethane3-acetylpyridineN,N-dimethylformamideN,N-diisopropylethylamine-propanoateN,N-diisopropylethylamine-butanoateEPPSBicineHepes-Natert-butanolwaterethanol
外文關鍵詞: phase equilibrium analyzer (PEA), carbon dioxide, methane, 3-acetylpyridine, N,N-dimethylformamide, N,N-diisopropylethylamine-propanoate, N,N-diisopropylethylamine-butanoate, EPPS, Bicine, Hepes-Na, tert-butanol, water, ethanol
相關次數: 點閱:343下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究採用合成法,以一可變體積附視窗暨影像處理系統的高壓相平衡分析裝置量取恆溫下之汽液相平衡數據,量測系統包含二氧化
碳與3-acetylpyridine,acetophenone,N,N-dimethylformamide, N,N-diisopropylethylamine-propanoate [DIPEA][C2COO]或N,N-diisopropylethylamine-butanoate [DIPEA][C3COO] 兩種不同陰離子之離子液體,量測溫度介於303.2 K~348.2 K之間,而操作壓力高至31.07 MPa。此外,這些相邊界數據以Peng-Robinson狀態方程式,結合單交互作用參數之凡得瓦爾單一流體混合律或Wong-Sandler混合律關聯,訂定最適化雙成分交互作用參數值。根據實驗結果二氧化碳與3-acetylpyridine,acetophenone,N,N-dimethylformamide等三個系統在臨界區域附近各成分K值隨壓力之變化分別以圖形表示。由於在臨界區附近之相關文獻極為有限,這些相平衡數據對於增進吾人對臨界區域附近相行為之知識有其必要性。
另外本研究也觀察多成分系統恆溫下之相邊界性質,所探討的系統包括二氧化碳與緩衝溶4-(2-hydroxyethyl)-1-piperazinepropanesulfonic- acid (EPPS) 在有或無乙醇情況下的水溶液系統、二氧化碳與緩衝溶液N,N-bis(2-hydroxyethyl)glycine (Bicine)之水溶液系統、甲烷與緩衝溶液HEPES-Na或tert-butanol之水溶液系統,溫度範圍為275.2 K~348.2 K,而壓力高達14.72 MPa。原始的Peng-Robinson狀態方程式結合Wong-Sandler混合律與修正吸引力項Mathias-Copeman alpha function (PRWS-MC) 之模式用於關聯這些多成分系統之相邊界數據。關聯結果顯示,汽液相平衡數據可準確關聯,然而無法用於描述系統中之液液分相的行為。同時對於含有乙醇系統的泡點曲線數據,Peng-Robinson狀態方程式關聯結果顯示有相對較大之誤差。在考量二氧化碳與緩衝溶液EPPS之水溶液系統中之化學作用效應的情況下,本研究也採用Kent-Eisenberg模式描述其汽液相平衡性質,該模式可關聯二氧化碳之分壓與二氧化碳吸收量,其平均絕對誤差分別為1.7%與9.5%。除此之外,本研究也探討在常壓下利用EPPS與Bicine之水溶液捕捉並封存二氧化碳以便與高壓操作的結果作比較。我們將透過上述提及之高壓相平衡分析裝置捕捉飽和二氧化碳水溶液,與在常壓下捕捉之飽和二氧化碳水溶液之兩種方法,分別在常壓下與氯化鈣鹽類反應,並且成功地將其轉變成碳酸鹽類。本研究之結果提供了很重要的新相平衡數據,這些資料有助於尋求二氧化碳捕捉與封存操作之合適條件。


A synthetic method with a visual and volume-variable high-pressure phase equilibrium analyzer (PEA) was employed for determining the phase boundaries over a wide pressure and temperature ranges. The isothermal phase boundaries were measured for CO2 + 3-acetylpyridine, CO2 + acetophenone, CO2 + N,N-dimethylformamide, CO2 + ionic liquids N,N-diisopropylethylamine-propanoate [DIPEA][C2COO] or N,N-diisopropylethylamine-butanoate [DIPEA][C3COO] at temperatures from 303.2 K to 348.2 K and pressures up to 31.07 MPa. The phase boundaries were correlated with Peng-Robinson (PR) equation of state (EoS) together with the van der Waals one fluid or the Wong-Sandler mixing rules to determine optimal values of binary interaction parameters. According to experimental results, the isothermal K-values varying with pressure were presented graphically around the critical points for CO2 + 3-acetylpyridine, CO2 + acetophenone and CO2 + N,N-dimethylformamide systems. Since available information in near critical regions is limited, these phase equilibrium data are needed for improving the knowledge of phase behavior near critical region.
In this study, the isothermal of multicomponent phase boundaries were also observed for several multicomponent systems, including CO2 + buffer 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid (EPPS) with or without ethanol, CO2 + buffer N,N-bis(2-hydroxyethyl)glycine (Bicine) aqueous solutions, CH4 + HEPES-Na and CH4 + tert-butanol at temperatures from 275.2 K to 348.2 K and pressures up to 14.72 MPa. The PR EoS incorporating with the Wong-Sandler mixing rule and the Mathias-Copeman alpha function (PRWS-MC) was used to correlated the phase boundaries of multicomponent systems. The VLE data can satisfactorily correlated but fail to represent the behavior of liquid-liquid phase splitting. Relative large deviations were also found when we applied the Peng-Robinson equation to correlate the bubble point data of ethanol-containing system. In the present study, the chemical interactions are also considered for CO2 + EPPS aqueous solution to represent the VLE data by applying the Kent-Eisenberg model with partial pressure of carbon dioxide and carbon dioxide loading to the AARD of 1.7% and 9.5%, respectively. Moreover, sequestration carbon dioxide with aqueous EPPS and Bicine solutions were also investigated at atmospheric pressure for comparison purpose. The saturated carbon dioxide aqueous solutions, prepared at elevated and atmospheric pressures, were further reacted with calcium chloride at ambient condition. The absorbed carbon dioxide was successfully converted into carbonate. The results of this study are important to provide new phase equilibria data and be useful to find the suitable operating conditions for carbon dioxide capture and storage.

Chinese Abstract I English Abstract III Acknowledgement V Table of Contents VII Nomenclatures X List of Tables XIII List of Figures XV Chapter 1 Introduction 1 1.1 Carbon dioxide capture and storage 6 1.1.1 Amine solvents 6 1.1.2 Biological buffer 7 1.1.3 Ionic liquids 8 1.2 Phase equilibrium measurement 13 1.2.1 Analytic method 13 1.2.1-1 Isothermal analytic method 14 1.2.1-2 Isobaric analytic method 14 1.2.1-3 Isobaric-isothermal analytic method 15 1.2.1-4 Continuous-flow method 15 1.2.1-5 Semi-flow method 16 1.2.2 Synthetic method 16 1.2.2-1 Visual synthetic method 17 1.2.2-2 Non-visual synthetic method 17 1.2.3 Other methods 18 1.3 Aim of this study 18 Chapter 2 Experimental Section 30 2.1 Materials 30 2.2 Visual-volume variable high pressure phase equilibrium analyzer (PEA) 33 2.2.1 Flushing section 33 2.2.2 Loading section 33 2.2.3 Equilibrium section 34 2.2.4 Visual observation section 35 2.3 Procedure of operation of PEA apparatus 37 2.4 Phase transition 37 2.4.1 Phase transition in the bubble point region 38 2.4.2 Phase transition near critical region 38 2.4.3 Phase transition around dew point region 39 2.5 Solubility of carbon dioxide at atmospheric pressure 45 2.6 Sequestration of carbon dioxide 47 2.7 Determination of CO2 solubility by titration method 49 2.8 Ionic liquids preparation 51 2.8.1 Diisopropylethylamine-Propionoate ionic liquid 51 2.8.2 Diisopropylethylamine-Butanoate ionic liquid 51 Chapter 3 Experimental Results 54 3.1 Vapor-liquid equilibrium of binary systems 54 3.2 Calculation of K-values 70 3.3 Vapor-liquid equilibrium of ternary system 80 3.4 Vapor-liquid equilibrium of quaternary system 99 3.5 Solid carbonates formation 103 3.6 Solubility of carbon dioxide in atmospheric pressure 116 Chapter 4 Correlation of Phase Equilibrium Data 117 4.1 Correlation of phase boundary data with the Peng-Robinson equation of state 118 4.2 Correlation of phase boundary data with the Kent-Eisenberg model 154 Chapter 5 Conclusions 159 References 162 Appendix 175 Biographical Data 201 List of Publications 201

Agustin B., S. Y. Lin, A. Kurniawan, Y. H. Ju, F. E. Soetaredjo, and S. Ismadji, “Solubilities of 3-Acetylpiridine in Supercritical Carbon Dioxide at Several Temperatures and Pressures :Experimental and Modeling,” Fluid Phase Equilib., 354, 127-132 (2013).

Andersson, K. and F. Johnsson, “Process Evaluation of an 865MW e Lignite Fired O2/CO2 Power Plant,” Energ. Convers. Manage., 47, 3487-3498 (2006).

Anthony, J. L., E. J. Maginn, and J. F. Brennecke, “Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-n-Butyl-3- methylimidazolium Hexafluorophosphate,” J. Phys. Chem. B, 106, 7315–7320 (2002).

Aubert, J. H., “Solubility of Carbon Dioxide in Polymers by the Quartz Crystal Microbalance Technique,” J. Supercrit. Fluids, 11, 163-172 (1998).

Bamberger, A. and G. Maurer, “High-Pressure Vapor-Liquid Equilibria in Binary Mixtures of Carbon Dioxide and Aromatic Hydrocarbons: Experimental Data and Correlation for CO2 + Acetophenone, CO2 + 1-Chloronaphthalene, CO2 + Methyl Benzoate and CO2 + n-Propylbenzene,” J. Supercrit. Fluids, 7, 115–127 (1994).

Blanchard, L. A., Z. Gu, and J. F. Brennecke, “High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems,” J. Phys. Chem. B, 105, 2437– 2444 (2001).

Brunner, G., “Supercritical Fluids: Technology and Application to Food Processing,” J. Food Eng., 67, 21-33 (2005).

Buttry, D. A. and M. D. Ward, “Measurement of Interfacial Processes at Electrode Surfaces with the Electrochemical Quartz Crystal Microbalance,” Chem. Rev., 92, 1355-1379 (1992).

Bünz, A. P., Hochdruckphasengleichgewichte in Mehrkomponentensystemen aus Kohlenhydraten, Wasser, Alkoholen und Kohlendioxid, VDIFortschrittbericht Reihe 3, Nr. 406, VDI Verlag, Düsseldorf, (1995).

Byun, H. S., J. G. Kim, and J. S. Yang, “Phase Behavior of the Poly[hexyl(meth)acrylate]-
Supercritical Solvents-Monomer Mixtures at High Pressures,” Ind. Eng. Chem. Res., 43, 1543-1552 (2004).

Cadena, C., J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, and E. J. Maginn, “Why is CO2 so soluble in imidazolium-based ILs?,” J. Am. Chem. Soc., 126, 5300–5308 (2004).

Camper, D., P. Scovazzo, C. Koval, and R. Noble, “Gas solubilities in room-temperature ILs,” Ind. Eng. Chem. Res., 43, 3049–3054 (2004).

Chapoy, A., A. H. Mohammadi, D. Richon, and B. Tohidi, “Gas Solubility Measurement and Modelling for Methane-Water and Methane-Ethane-n-Butane-Water Systems at Low Temperature Conditions,” Fluid Phase Equilib., 220, 111-119 (2004).

Chirico, R. D., V. Diky, J. W. Magee, M. Frenkel, and K. N. Marsh, “Thermodynamic and Thermophysical Properties of the Reference Ionic Liquid 1-Hexyl-3-methylimidazolium bis[(Trifluoromethyl)sulfonyl]amide (Including Mixtures). Part 2. Critical Evaluation and Recommended Property Values,” Pure Appl. Chem., 81, 791-828 (2009).

Chiu, H. -Y., R. -F. Jung, M. -J. Lee, and H. -M. Lin, “Vapor-Liquid Phase Equilibrium Behavior of Mixtures Containing Supercritical Carbon Dioxide Near Critical Region,” J. Supercrit. Fluids, 44, 273–278 (2008).

Chiu, H. -Y., M. -J. Lee, and H. -M. Lin, “Vapor-Liquid Phase Boundaries of Binary Mixtures of Carbon Dioxide with Ethanol and Acetone,” J. Chem. Eng. Data, 53, 2393–2402 (2008).

Chiu, H. -Y., H. -M. Lin, and M. -J. Lee, “Vapor-Liquid Phase Equilibrium of Carbon Dioxide with Mixed Solvents of DMSO + Ethanol and Chloroform + Methanol Including Near Critical Regions,” J. Supercrit. Fluids, 82, 146–150 (2013).

Christov, M. and R. Dohrn, "High-Pressure Fluid Phase Equilibria: Experimental Methods and Systems Investigated (1994–1999),” Fluid Phase Equilib., 202, 153-218 (2002).

Corradetti, A. and U. Desideri, “Analysis of Gas-Steam Combined Cycles with Natural Gas Reforming and CO2 Capture,” J. Eng. Gas Turb. Power, 127, 545-552 (2005).

D’Alessandro, D. M., B. Smit, and J. R. Long, “Carbon Dioxide Capture: Prospects for New Materials,” Angew. Chem. Int. Ed., 49, 6058-6082 (2010).

David, H. and H. T. Chen, “Isobaric Vapor-Liquid Equilibria for the Systems Glycerol-Water and Glycerol-Water Saturated with Sodium Chloride,” J. Chem. Eng. Data, 15, 471–474 (1970).
Davison, J., L. Bressan, and R. Domenichini, “CO2 Capture in Coal-Based IGCC Power Plants. in Seventh International Conference on Greenhouse Gas Control Technologies. Vancouver, Canada (2004).

Dohrn, R., S. Peper, and J. M. S. Fonseca, "High-Pressure Fluid-Phase Equilibria: Experimental Methods and Systems Investigated (2000–2004),” Fluid Phase Equilib., 288, 1-54 (2010).

Dohrn, R. and G. Brunner, “Phase Equilibria in Ternary and Quaternary Systems of Hydrogen, Water and Hydrocarbons at Elevated Temperatures and Pressures,” Fluid Phase Equilib., 29, 535–544 (1986).

Dohrn, R., A.P. Bünz, F. Devlieghere, and D. Thelen, “Experimental Measurements of Phase Equilibria for Ternary and Quaternary Systems of Glucose, Water, CO2 and Ethanol with A Novel Apparatus,” Fluid Phase Equilib., 83, 149–158 (1993).

Duran-Valencia, C., A. Valtz, L. A. Galicia-Luna, and D. Richon, “ Isothermal Vapor-Liquid Equilibria of the Carbon Dioxide (CO2)-N,N-dimethylformamide (DMF) System at Temperatures from 293.95 K to 338.05 K and Pressures up to 12 MPa,” J. Chem. Eng. Data, 46, 1589-1592 (2001).

Dwi, M. Y., J. Julian, J. N. Putro, A. T. Nugraha, Y. –H. Ju, N. Indraswati, and S. Ismadji, “Solubility of Acetophenone in Supercritical Carbon Dioxide,” The Open Chemical Engineering Journal, 10, 18-28 (2016).

Dyer, P. N., R. E. Richards, S. L. Russek, and D. M. Taylor, “Ion Transport Membrane Technology for Oxygen Separation and Syngas Production,” Solid State Ionics, 134, 21-33 (2000).

EIA, “International Energy Outlook 2007 (EIA),” US DOE, http://www.eia.doe.gov/oiaf/ieo/index.html, accessed November 2007.

Eubank, P. T., K. R. Hall, and J. C. Holste, “A Review of Experimental Techniques for Vapor Liquid Equilibria at High Pressures,” Phase Equilibria and Fluid Properties in the Chemical Industry: Proceedings, 2nd International Conference, H. Knapp and S. I. Sandler, eds., Great Neck, NY 675 (1980).

Fages, J., H. Lochard, J.-J. Letourneau, M. Sauceau, and E. Rodier, “Particle Generation for Pharmaceutical Applications Using Supercritical Fluid Technology,” Powder Technol., 141, 219-226 (2004).

Ferrentino, G., S. Balzan, and S. Spilimbergo, "On-Line Color Monitoring of Solid Foods During Supercritical CO2 Pasteurization,” J. Food Eng., 110, 80-85 (2012).

Figueroa, J. D., T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, “Advances in CO2 Capture Technology – the U.S. Department Of Energy’s Carbon Sequestration Program,” Int. J. GreenH Gas Con., 2, 9-20 (2008).

Fonseca, J. M. S., R. Dohrn, and S. Peper, "High-Pressure Fluid-Phase Equilibria: Experimental Methods and Systems Investigated (2005–2008),” Fluid Phase Equilib., 300, 1-69 (2011).

Fornari, R. E., P. Alessi, and I. Kikic, "High Pressure Fluid Phase Equilibria: Experimental Methods and Systems Investigated (1978–1987),” Fluid Phase Equilibria, 57, 1-33 (1990).

Fredenslund, A., Gmehling, J., Rasmussen, P., 1977. Vapor-Liquid Equilibria Using UNIFAC : A Group Contribution Method. Elsevier Scientific, New York.

Freemantle, M., “An Introduction to Ionic Liquids,” RSC Publishing, London (2010).

Ge, R., C. Hardacre, J. Jacquemin, and D. W. Rooney, “Thermophysical Properties of Ionic Liquids. In Ionic Liquids: From Knowledge to Application,” N. Plechkova, R. D. Rogers, K. R. Seddon, Eds.; ACS Symp. Ser. 1030; American Chemical Society: Washington, DC, (2009).

Guerra-Neto, D. D. B., L. Ferreira-Pinto, W. M. Giufrida, M. S. Zabaloy, L. Cardozo-Filho, and O. Chiavone-Filho, “Bubble Point Determination for CO2 + Ethanol + Alkanolamines (Monoethanolamine , Diethanolamine , or Triethanolamine) at High Pressures,” J. Chem. Eng. Data, 59, 3319–3323 (2014).

Guigard, S. E., G. L. Hayward, R. G. Zytner, and W. H. Stiver, “Measurement of Solubilities in Supercritical Fluids Using A Piezoelectric Quartz Crystal,” Fluid Phase Equilib., 187-188, 233-246 (2001).

Gregg, C. J., F. P. Stein, C. K. Morgan, and M. Radosz, “A Variable-Volume Optical Pressure-Volume-Temperature Cell for High-Pressure Cloud Points, Densities, and Infrared Spectra, Applicable to Supercritical Fluid Solutions of Polymers up to 2 kbar,” J. Chem. Eng. Data, 39, 219-224 (1994).
Isothermal Properties for Carbon Dioxide, 2003. NIST Chemistry WebBook, NIST Standard Reference Database No. 69-March 2003 Release, National Institute of Standard and Technology, USA. http://webbook.nist.gov/chemistry/ (accessed June 06, 2015).

IPCC, IPCC Special Report on Carbon Dioxide Capture and Storage, B. Metz, et al., Editors. 2005.

Janshoff, A., H.-J. Galla, and C. Steinem, “Piezoelectric Mass-Sensing Devices as Biosensor- An Alternative to Optical Biosensors?,” Angew. Chem., Int. Ed., 39, 4004- 4032 (2000).

Kamps, A. P.-S., D. Tuma, J. Xia, and G. Maurer, “Solubility of CO2 in the Ionic Liquid [Bmim][PF6],” J. Chem. Eng. Data, 48, 746–749 (2003).

Ke, J., P. J. King, M. W. George, and M. Poliakoff, “Method for Locating the Vapor-Liquid Critical Point of Multicomponent Fluid Mixtures Using a Shear Mode Piezoelectric Sensor,” Anal. Chem., 77, 85-92 (2005).

Kent, R. L. and B. Eisenberg, “Better data for amine treating,” Hydrocarbon Process 55, 87-90 (1976).

Kim, Y. S., W. Y. Choi, J. H. Jang, K.-P. Yoo, and C. S. Lee, “Solubility Measurement and Prediction of Carbon Dioxide in ILs,” Fluid Phase Equilib., 228-229, 439–445 (2005).

Kordikowski, A., A. P. Schenk, R. M. VanNielen, and C. J. Peters, “Volume Expansions and Vapor-Liquid Equilibria of Binary Mixtures of a Variety of Polar Solvents and Certain Near-Critical Solvents,” J. Supercrit. Fluids, 8, 205-216 (1995).

Kunze, C. and H. Spliethoff, “Assessment of Oxy-Fuel, Pre- and Post-Combustion-Based Carbon Capture for Future IGCC Plants,” Appl. Energy, 94, 109-116 (2012).

Lee, B. I. and M. G. Kesler, “A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States,” AIChE J., 21, 510-527 (1975).

Lee, R. J. and K. C. Chao, “Extraction of 1-Methylnaphthalene and m-Cresol with Supercritical Carbon Dioxide and Ethane,” Fluid Phase Equilib., 43, 329-340 (1988).

Lekvam, K. and P. R. Bishnoi, “Dissolution of Methane in Water at Low Temperatures and Intermediate Pressures,” Fluid Phase Equilib., 131, 297–309 (1997).

Li, H., M. Han, X. Gao, and X. Li, "Isobaric Vapor–Liquid Equilibrium for Binary System of Cinnamaldehyde + Benzaldehyde at 10, 20 and 30 kPa,” Fluid Phase Equilib., 364, 62-66 (2014).

Lin, H. –M., M. –J. Lee, and R. –J. Lee, “High-Temperature Phase Equilibria for Assymmetric Mixtures of Helium + m-Xylene and Nitrogen + m-Xylene,” Ind. Eng. Chem. Res., 34, 4524-4530 (1995).

Lydersen, A. L., “Estimation of Critical Properties of Organic Compounds by the Method of Group Contributions,” University of Wisconsin Engineering Experiment Station Report 3 (1955).

Marsh, K. N., J. F. Brennecke, R. D. Chirico, M. Fremkel, A. Heintz, J. W. Magee, C. J Peters, L. P. N. Rebelo, and K. R. Seddon, “Thermodynamic and Thermophysical Properties of the Reference Ionic Liquid: 1-Hexyl-3-methylimidazolium bis[(Trifluoromethyl)sulfonyl]amide (Including Mixtures). Part 1. Experimental Methods and Results,” Pure Appl. Chem., 81, 781-790 (2009).

Naito, M., Y. Sasaki, T. Dewa, Y. Aoyama, and Y. J. Okahata, “Effect of Solvation on Induce –Fit Molecular Recognition in Supercritical Fluid to Organic Crystals Immobilized on A Quartz Crystal Microbalance,” Am. Chem. Soc., 123, 11037-11041 (2001).

Oktavian, R., M. Taha, and M. -J. Lee, “Experimental and Computational Study of CO2 Storage and Sequestration with Aqueous 2 Amino-2-hydroxymethyl-1,3-propanediol (TRIS) Solutions,” J. Phys. Chem. A 118, 11572-11582 (2014).

Othmer, D. F., “Composition of Vapors from Boiling Soultions,” Anal. Chem., 20, 763-766 (1948).

Park, K., M. Koh, C. Yoon, H. Kim, and H. Kim, ACS Symp. Ser., No. 860, 207-222 (2003).

Peng, D. Y. and D. B. Robinson, “A New Two-Constant Equation of State,” Ind. Eng. Chem. Fundam., 15, 59-64 (1976).

Pfohl, O., J. Petersen, R. Dohrn, and G. Brunner, “Partitioning of Carbohydrates in the Vapor-Liquid-Liquid Region of the 2-Propanol + Water + Carbon Dioxide System,” J. Supercrit. Fluids, 10, 95–103 (1997).

Prausnitz, J. M. and F. W.Tavares, “Thermodynamics of Fluid-Phase Equilibria for Standard Chemical Engineering Operations,” AIChE J., 50, 739–761 (2004).

Raal, J. D., A. M. Motchelaho, Y. Perumal, X. Courtial, and D. Ramjugernath, "P–x Data for Binary Systems Using A Novel Static Total Pressure Apparatus,” Fluid Phase Equilib., 310, 156-165 (2011).

Ramdin, M., T.W. de Loos, and T. J. H. Vlugt, “State-of-the-Art of CO2 Capture with Ionic Liquids,” Ind. Eng. Chem. Res., 51, 8149−8177 (2012).

Reid R. C., Prausnitz J. M., and Poling, B. E. The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, (1984).

Ree, F. H., “Supercritical Fluid Phase Separations: Implications for Detonation Properties of Condensed Explosives,” J. Chem. Phys., 84, 5845-5856 (1986).

Rettich, T. R., Y. P. Handa, R. Battino, and E. Willheim, “Solubility of Gases in Liquids. 13. High-Precision Determination of Henry’s Constants for Methane and Ethane in Liquid Water at 275 to 328 K,” J. Phys. Chem., 85, 3230-3237 (1981).

Ryden, M., A. Lyngfelt, and T. Mattisson, “Synthesis Gas Generation by Chemical Looping Reforming in a Continuously Operating Laboratory Reactor,” Fuel, 85, 1631-1641 (2006).

Ryden, M. and A. Lyngfelt, “Using Steam Reforming to Produce Hydrogen with Carbon Dioxide Capture by Chemical-Looping Combustion,” International Journal of Hydrogen Energy, 31, 1271-1283 (2006).

Reverchon, E. and I. D. Marco, “Supercritical Fluid Extraction and Fractionation of Natural Matter,” J. Supercrit. Fluids, 38, 146-166 (2006).

Rochelle, G. T., “Amine Scrubbing for CO2 Capture,” Science, 325, 1652-1654 (2009).

Rogers, R. D., and K. R. Seddon, “Ionic Liquids-Solvents of the Future,” Science, 302, 792-793 (2003).

Rooney, D., J. Jacquemin, and R. Gardas, “Thermophysical Properties of Ionic Liquids,” Top. Curr. Chem., 290, 185-212 (2010).

Scovazzo, P., J. Kieft, D. A. Finan, C. Koval, D. DuBois, and R. Noble, “Gas Separation Using Non-Hexafluorophosphate [PF6-] Anion Supported Ionic Liquid Membranes,” J. Membr. Sci., 238, 57–63 (2004).

Seddon, K. R. In Proceedings of the International George Papatheodorou Symposium; Boghosian, S., Dracopoulos, V., Kontoyannis, C. G., Voyiatzis, G. A., Eds.; Institute of Chemical Engineering and High Temperature Processes, Petras, 131 (1999).

Seddon, K., “Ionic Liquids: Designer Solvents for Green Synthesis,” Tce, 730, 33–35 (2002).

Servio, P. and P. Englezos, “Measurement of Dissolved Methane in Water in Equilibrium with Its Hydrate,” J. Chem. Eng. Data, 47, 87–90 (2002).
Shiflett, M. B. and A.Yokozeki, “Solubilities and Diffusivities of Carbon Dioxide in ILs: [Bmim][PF6] and [Bmim][BF4],” Ind. Eng. Chem. Res., 44, 4453–4464 (2005).

Simnick, J. J., C. C. Lawson, H. M. Lin, and K. C. Chao, “Vapor-Liquid Equilibrium of Hydrogen-Tetralin System at Elevated Temperature and Pressures,” AIChE J., 23, 469-476 (1977).

Subramoney, S. C., X. Courtial, P. Naidoo, C. Coquelet, D. Richon, and D. Ramjugernath, “Isothermal Vapor–Liquid Equilibrium Data for the Ethylene + 1,1,2,3,3,3-hexafluoro-1-propene Binary System Between 258 and 308 K at Pressures up to 4.56 MPa,” Fluid Phase Equilib., 353, 7-14 (2013).

Tang, M., T. -B. Du, and Y. -P. Chen, “Sorption and Diffusion of Supercritical Carbon Dioxide in Polycarbonate,” J. Supercrit. Fluids, 28, 207-218 (2004).

Tiwikrama, A. H. and M. –J. Lee, “Comment on “Solubilities of 3-Acetylpyridine in Supercritical Carbon Dioxide at Several Temperatures and Pressures: Experimental and Modeling,” Fluid Phase Equilib., 354 (2013) 127–132,” Fluid Phase Equilib., 427, 143-146 (2016).

Valtz, A., A. Chapoy, C. Coquelet, P. Paricaud, and D. Richon, “Vapor-Liquid Equilibria in the Carbon Dioxide-Water System, Measurement and Modelling from 278.2 to 318.2 K,” Fluid Phase Equilib., 226, 333-344, (2004).

Veawab, A., A. Aroonwilas, and P. Tontiwachwuthiku, “CO2 Absorption Performance of Aqueous Alkanolamines in Packed Columns,” Fuel Chem. Div. PRepr., 47, 49–50 (2002).
von Solms, N., J. K. Nielsen, O. Hassager, A. Rubin, A. Y. Dandekar, S. I. Andersen, and E. H. Stenby, Direct Measurement of Gas Solubilities in Polymers with A High-Pressure Microbalance,” J. Appl. Polym. Sci., 91, 1476-1488 (2004).

Wang, L. –K., G. –J. Chen, G. –H. Han, X. –Q. Guo, and T. –M. Guo, “Experimental Study on the Solubility of Natural Gas Components in Water with or without Hydrate Inhibitor,” Fluid Phase Equilib., 207, 143-154 (2003).

Welton T., “Room-Temperature Ionic Liquids—Solvents for Synthesis and Catalysis,” Chemical Reviews, 99, 2071–2083 (1999).

Weng, W. L. and M. J. Lee, “Vapor-Liquid Equilibrium of the Octane/Carbon Dioxide, Octane/Ethane and Octane/Ethylene Systems,” J. Chem. Eng. Data, 37, 213-215 (1992).

Wilkinson, M. B., J. C. Boden, T. Gilmartin, C. Ward, D. A. Cross, R. J. Allam, and N. W. Ivens, “CO2 Capture from Oil Refinery Process Heaters Through Oxyfuel Combustion,” in Sixth International Conference on Greenhouse Gas Control Technologies. Kyoto, Japan: Elsevier Science Ltd, Oxford UK (2002).

Yamamoto, S., J. B. Alcauskas, and T. E. Crozier, “Solubility of Methane in Distilled Water and Seawater,” J. Chem. Eng. Data, 21, 78-80 (1976).

Zhang, W. and E. Kiran, “(p,V,T) Behaviour and Miscibility of (Polysulfone+THF+Carbon Dioxide) at High Pressures,” J. Chem. Thermodyn., 35, 605-624 (2003).

QR CODE