簡易檢索 / 詳目顯示

研究生: 巫祈
Chi - Wu
論文名稱: 用於雙頻組織諧波影像之格雷編碼波形
Golay-Encoded Excitation for Dual-Frequency Ultrasound Tissue Harmonic Imaging
指導教授: 沈哲州
Che-Chou Shen
口試委員: 王士豪
Shyh-Hau Wang
廖愛禾
Ai-Ho Liao
鄭耿璽
Geng-Shi Jeng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: 雙頻編碼波形相位編碼啾聲格雷組織諧波影像旁瓣信號頻域複合
外文關鍵詞: Dual-frequency, Coded excitation, Phased-encoded, Chirp, Golay, Tissue harmonic imaging, Range side-lobe, Frequency compounding
相關次數: 點閱:248下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

雙頻諧波影像與傳統單頻諧波影像相比可有效利用成像系統頻寬並且可利用頻域複合技術來增強影像對比度;雙頻諧波影像雖然可以利用特殊啾聲編碼方式來增加諧波訊雜比以改善影像穿透度,並同時維持信號頻寬與解析度,但啾聲編碼在雙頻諧波中會受限於兩影像頻帶互干擾產生的中央旁瓣問題。本研究利用格雷互補對的相位編碼特性來避免影像頻帶互干擾產生之旁瓣假影,並且發展反相消除法由另一組特殊設計的格雷編碼與原有格雷編碼結合以消除三倍頻帶諧波干擾與對應之旁瓣假影,本研究也發展出利用格雷編碼正交特性的三倍頻旁瓣消除法來抑制旁瓣信號且不喪失幀率。由水聽筒實驗結果顯示,格雷編碼較啾聲編碼的壓縮品質好,並可利用干擾消除法進一步提升壓縮品質分別達13.9%及11.3%。仿體實驗結果顯示經過特殊設計之格雷編碼波形能夠提高雙頻諧波影像的訊雜比達10 dB,並可大幅抑制影像的旁瓣強度達7.5dB;且因格雷互補對是相位編碼,在儀器上的產生也較容易實現。


Compared with conventional single-frequency counterpart, dual-frequency harmonic imaging (DHI) , can effectively use the system bandwidth for enhancement of contrast-to-noise ratio (CNR) by frequency compounding. Though particular Chirp-encoded excitation can achieve high signal-to-noise ratio (SNR) for penetration together with wide signal bandwidth for resolution, it suffers from the central side-lobes because of the mutual interference between two imaging bands. In this study, we take advantage of the phase encoding of complementary Golay pairs to alleviate the mutual interference. Particular Golay combined with the original Golay code to suppress the range side-lobes from second-order interference. To maintain the frame rate another side-lobe suppression technique is also developed using the orthogonality between Golay pairs. Hydrophone experiments show that, the Golay waveform improves the compression quality in DHI as compared to the Chirp counterpart by 13.9% and 11.3%. B-mode phantom imaging show that, the proposed Golay waveform can improves the SNR by 10 dB and effectively eliminates the Side-lobes magnitude (SLM) by 7.5 dB.

第一章 緒論 .............................................................................. 1 1-1 超音波影像原理 ....................................................................... 1 1-1-1頻域影像複合 ..................................................................... 3 1-1-2編碼波形 ............................................................................. 5 1-2 組織諧波影像 ........................................................................... 7 1-3 雙頻組織諧波影像 ................................................................. 11 1-4 研究動機 ................................................................................. 14 2 第二章 格雷編碼用於雙頻影像 ........................................... 15 2-1 格雷編碼原理與特性 ............................................................. 15 2-2 用於雙頻諧波影像之格雷編碼設計與其限制 ..................... 17 2-3 反相干擾消除法 ..................................................................... 20 2-4 正交干擾消除法 ..................................................................... 28 3 第三章 研究方法 ................................................................... 33 3-1 各種激發波形 ......................................................................... 33 3-2 實驗架構 ................................................................................. 35 3-2-1 水聽筒諧波量測 .............................................................. 35 3-2-2組織仿體影像及點擴散影像 ........................................... 36 3-2-3 諧波信號處理與成像 ...................................................... 37 VI 3-3 壓縮品質計算 ......................................................................... 38 3-4 影像品質估計 ......................................................................... 39 3-4-1 SNR與CNR ..................................................................... 39 3-4-2 Side Lobe Magnitude (SLM) ............................................ 40 4 第四章 研究結果 ................................................................... 41 4-1 水聽筒實驗 ............................................................................. 41 4-1-1 諧波頻譜 .......................................................................... 41 4-1-2 諧波封包 .......................................................................... 49 4-1-3 壓縮品質 .......................................................................... 55 4-2 仿體影像 ................................................................................. 58 4-2-1 線仿體影像 ...................................................................... 58 4-2-2 組織仿體影像 .................................................................. 66 4-2-3影像複合 ........................................................................... 74 5 第五章 討論、結論與未來工作 ........................................... 76 6 參考文獻 ................................................................................... 82

[1] Magnin, P.A., von Ramm, O.T., and Thurstone, F. L., “Frequency Compounding for Speckle Contrast Reduction in Phase Array Images,” Ultrasonic Imaging, Vol. 4, pp. 267-281 (1982).
[2] Trahey, G. E., Allison, J. W., Smith, S. W., and von Ramm, O. T., “A Quantitative Approach to Speckle Reduction Via Frequency Compounding,” Ultrasonic Imaging, Vol. 8, No. 3, pp. 151-164 (1986).
[3] Li, P. C., and Shen, C. C., “Effects of Transmit Focusing on Finite Amplitude Distortion Based Second Harmonic Generation,” Ultrasonic Imaging, Vol. 21, No. 14, pp. 243-258 (1999).
[4] Takeuchi, Y., “Coded Excitation for Harmonic Imaging,” Proceedings of the IEEE Ultrasonics Symposium, Vol. 2, pp. 1433–1436 (1996).
[5] O’Donnell, M., “Coded Excitation System for Improving the Penetration of Real-Time Phased-Array Imaging Systems,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 39, No. 3, pp. 341–351 (1992).
[6] Chiao, R. Y., and Hao, X. H., “Coded Excitation for Diagnostic Ultrasound: A System Developer's Perspective,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 52, No. 2, pp. 160–170 (2005).
[7] Shi, T.Y., and Shen, C.C., “Golay-encoded excitation for dual-frequency harmonic detection of ultrasonic contrast agents,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 58, No. 2, pp. 349–356 (2011).
[8] Lin, C.H., and Shen, C.C., “Chirp-encoded excitation for dual-frequency ultrasound tissue harmonic imaging,” IEEE
83
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 59, No. 11, pp.2420-2430 (2012).
[9] Flax, S. W., and O’Donnell, M., “Phase-Aberration Correction Using Signals from Point Reflectors and Diffuse Scatterers: Basic Principles,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 35, No. 6, pp.758-767 (1988).
[10] O’Donnell, M., and Flax, S. W., “Phase-Aberration Correction Using Signals from Point Reflectors and Diffuse Scatterers: Measurements,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 35, No. 6, pp.768-774 (1988).
[11] Ng, G. C., Freiburger, P. D., Walker, W. F., and Trahey, G. E., “A Speckle Target Adaptive Imaging Technique in the Presence of Distributed Aberrations,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 44, No. 1, pp.140-151 (1997).
[12] Pinton, G.F., Trahey, G.E. and Dahl, J.J., “Sources of image degradation in fundamental and harmonic ultrasound imaging using nonlinear, full-wave simulations,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 58, No. 4, pp.754-765 (2011).
[13] Nasholm, S.P., Angelsen, B.A.J., “SURF imaging beams in an aberrative medium: Generation and postprocessing enhancement,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 59, No. 11, pp.2588-2595 (2012).
[14] Cain, C. A., “Ultrasonic Reflection Mode Imaging of the Nonlinear Parameter B/A: I. A Theoretical Basis,” Journal of the Acoustical Society of America, Vol. 80, No. 1, pp. 28–32 (1986).
[15] Beyer, R. T., and Letcher, S. V., Nonlinear acoustics. New York, NY: Academic Press, 1969.
84
[16] Haran, M. E., and Cook, B. D., “Distortion of Finite Amplitude Ultrasound in Lossy Media,” Journal of the Acoustical Society of America, Vol. 73, No. 3, pp. 774–779 (1983).
[17] Biagi, E., Breschi, L., Vannacci, E., and Masotti, L., “Multipulse Technique Exploiting the Intermodulation of Ultrasound Waves in a Nonlinear Medium,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 56, No. 3, pp. 520–535 (2009).
[18] Nowicki, A., Wojcik, J., and Secomski, W., “Harmonic Imaging Using Multitone Nonlinear Coding,” Ultrasound in Medicine and Biology, Vol. 33, No. 7, pp. 1112–1122 (2007).

QR CODE