簡易檢索 / 詳目顯示

研究生: 邱則明
Tse-Ming Chiu
論文名稱: 石墨烯承載金屬/金屬氧化物複合材料於鋰離子電池陽極之應用
Synthesis of Graphene Supported MOx/C Nanocomposite as an Anode Material for Lithium ion Nattery
指導教授: 黃炳照
Bing-Joe Hwang
蕭敬業
Ching-Yeh Shiau
口試委員: 鄭銘堯
Ming-Yao Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 218
中文關鍵詞: 石墨烯金屬氧化物鋰離子二次電池陽極
外文關鍵詞: graphene, metal oxide, lithium ion secondary battery, anode
相關次數: 點閱:199下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展以Top-down之合成策略,直接以微米級金屬為前驅物,佐以葡萄糖與氧化石墨烯分散液,成功以水熱法製作出奈米級Graphene@MOx/C (M=Sn、Mn)複合材料。石墨烯材料的導入提升了碳多醣(Carbonaceous polysaccharide,CPS)複合材料之導電度,更可以藉此改善合金材料之循環壽命與質傳阻抗。Graphene@SnO2/C 複合材料在200次循環後達到427mAh/g之電容量。於錳金屬應用之方面,吾人利用相同的水熱操作條件,合成出具8至10 nm晶粒大小Graphene@MnCO3/C 複合材料。於400oC熱處理後成功將其轉變為具電化學活性之Graphene@Mn3O4/C複合材料。在鋰離子二次電池之應用上具有438mAh/g之電容量,首圈庫倫效率約達到50%,成功將葡萄糖氧化法延展至第二金屬系統。


    In this work Graphene @ MOx/C (M=Sn、Mn) composite was synthesized through a top-down strategy. In the synthesis procedure, micro-sized metal powder, glucose and 1wt% graphene oxide suspension was directly employed as the precursor. Under hydrothermal reaction conditions, micro-sized metal powders were broken down in to nano-sized, highly dispersed particles. The participation of graphene in this composite increase the electronic conductivity of carbonaceous polysaccharide based hybrid materials and is proven to be beneficial to the capacity retention and also the diffusion resistance. More than 427 mAh/g of reversible capacity is achieved with Graphene @ SnO2/C composite-based half cell at a current density of 200mA/g up to the 200th cycle.
    A manganese-based graphene @ MnCO3/C synthesized following the same procedure was also performed. In this case, micro-sized manganese metal was transformed into 8-10 nm sized Manganese carbonate. After 400oC heat treatment, a new kind of electrochemically active compound grapheme @ Mn3O4/C was formed. Cycling under the current density of 200 mA/g a capacity of 438mAh/g was reached up to the 30th cycle.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 第1章 緒論 1 1.1. 前言 1 1.2. 鋰離子電池的演進與發展 2 1.3. 鋰離子二次電池之組成與機制 5 1.4. 鋰離子二次電池之各元件介紹 7 1.4.1. 正極 (陰極) 7 1.4.2. 負極 (陽極) 13 1.4.3. 電解液 16 1.4.4. 隔離膜與固態電解質 20 1.5. 負極材料發展的趨勢 24 1.5.1. 鋰金屬 25 1.5.2. 碳材 26 1.5.3. 合金材料 30 1.5.4. 過渡金屬氧化物 35 1.6. 負極材料的展望 37 第2章 文獻回顧 40 2.1. 錫複合材料 40 2.1.1. 錫合金類 40 2.1.2. 碳錫復合材料 42 2.2. 氧化錳複合材料 49 2.3. 石墨烯 50 2.3.1. 石墨烯之特點 50 2.3.2. 石墨烯合成 52 2.4. 石墨烯複合材料 54 2.5. 研究動機與目的 58 第3章 實驗 60 3.1. 儀器設備 60 3.2. 實驗藥品 62 3.3. 實驗步驟 63 3.3.1. 氧化石墨烯合成 63 3.3.2. 陽極材料合成 64 3.3.3. 陽極極片之製備 67 3.3.4. 鈕扣型電池組裝 67 3.4. 材料鑑定與分析 69 3.4.1. XRD粉末繞射分析 69 3.4.2. 掃描式電子顯微鏡表面形態分析(SEM) 70 3.4.3. X光能量色散圖譜分析(EDS) 70 3.4.4. 穿透式電子顯微鏡(TEM) 71 3.4.5. TGA分析 71 3.5. 材料電化學特性測試 72 3.5.1. 電化學效能測試 72 3.5.2. 循環伏安分析 72 3.5.3. 交流阻抗分析 72 第4章 結果與討論 75 4.1. 氧化石墨烯的添加 75 4.1.1. Graphene @ SnO2/C XRD分析 76 4.1.2. Graphene @ SnO2/C SEM分析 79 4.1.3. Graphene @ SnO2/C TEM分析 82 4.1.4. Graphene @ SnO2/C TGA分析 84 4.1.5. 電化學分析 86 4.2. 不同還原程度和成Graphene@SnOx/C材料分析 92 4.2.1. Graphene @ SnOx/C XRD分析 93 4.2.2. Graphene @ SnOx/C SEM分析 96 4.2.3. Graphene @ SnOx/C TEM分析 102 4.2.4. Graphene @ SnOx/C TGA分析 107 4.2.5. 電化學分析 109 4.3. 錫金屬/石墨烯含量之提升 120 4.3.1. Graphene @ Sn/C XRD分析 120 4.3.2. Graphene @ Sn/C SEM分析 124 4.3.3. Graphene @ Sn/C TEM分析 129 4.3.4. Graphene @ Sn/C TGA分析 132 4.3.5. 電化學分析 134 4.4. 銅沉積改質Graphene @SnxCu1-x/C材料分析 137 4.4.1. Graphene @SnxCu1-x/C XRD分析 138 4.4.2. Graphene @SnxCu1-x/C SEM分析 141 4.4.3. Graphene @SnxCu1-x/C TEM分析 150 4.4.4. Graphene @SnxCu1-x/C STEM分析 155 4.4.5. Graphene @SnxCu1-x/C TGA分析 159 4.4.6. 電化學分析 161 4.5. Graphene @ Mn3O4/C 複合材料 170 4.5.1. Graphene @ Mn3O4/C XRD分析 170 4.5.2. Graphene @ Mn3O4/C SEM分析 174 4.5.3. Graphene @ Mn3O4/C TGA分析 177 4.5.4. 電化學分析 178 4.6. 綜合討論 180 第5章 結論 186 未來展望 188 參考文獻 189

    [1] 狩. 浩志, "【技術講座】電池開發呈多樣化,更加注重安全性能," NIKKEI ELECTRONICS TAIWAN EDITION, 2010.
    [2] 林振華、林振富, "充電式鋰離子電池之材料與應用.2-2."
    [3] H. K. Koji Kariatsumari "鋰離子充電電池的新紀元," NIKKEI ELECTRONICS TAIWAN EDITION, 2010.
    [4] M. Armand, "INTERCALATION ELECTRODES," Materials for Advanced Batteries, vol. 6, p381,1980.
    [5] 鄭如翔、黃炳照, "鋰離子電池正極材料之發展," Chemical Engerneering(The Taiwan I.Ch.E), vol. 58,p10, 2011.
    [6] L. F. Nazar, X. Ji, and K. T. Lee, "A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries," Nature Materials, vol. 8, pp. 500-506, 2009.
    [7] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges in the development of advanced Li-ion batteries: a review," Energy & Environmental Science, vol. 4, p. 3243, 2011.
    [8] B. L. Ellis, K. T. Lee, and L. F. Nazar, "Positive Electrode Materials for Li-Ion and Li-Batteries," Chemistry of Materials, vol. 22, pp. 691-714, 2010.
    [9] J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, and A. Kojic, "A Critical Review of Li/Air Batteries," Journal of The Electrochemical Society, vol. 159, p. R1, 2012.
    [10] J. P. Mizushima K, Wiseman PJ, Goodenough JB, "LixCoO2 (0≦x≦1): A new cathode material for batteries of high energy density," Materials Research Bulletin, vol. 15, p783,1980.
    [11] J. W. Fergus, "Recent developments in cathode materials for lithium ion batteries," Journal of Power Sources, vol. 195, pp. 939-954, 2010.
    [12] Y. Huang, J. Chen, J. Ni, H. Zhou, and X. Zhang, "A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2," Journal of Power Sources, vol. 188, pp. 538-545, 2009.
    [13] N. Yabuuchi, K. Yoshii, S.-T. Myung, I. Nakai, and S. Komaba, "Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2," Journal of the American Chemical Society, vol. 133, pp. 4404-4419, 2011.
    [14] M. M. Thackeray, David, W. I. F., Bruce, P. G. & Goodenough, J. B., "Lithium insertion into manganese spinels," Materials Research Bulletin, vol. 18, p.461,1983.
    [15] C. Qing, Bai, Y., Yang, J., Zhang, W, "Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating," Electrochimica Acta, vol. 56,p.6612, 2011.
    [16] H. Şahan, Goktepe, H., Patat, S. , Ulgen, A. , "Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications," Solid State Ionics, vol. 181,p.1437, 2010.
    [17] K. A. Walz, Johnson, C.S., Genthe, J, Stoiber, L.C, Zeltner, W.A., Anderson, M.A., Thackeray, M.M., "Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings," Journal of Power Sources, vol. 195,p.4943, 2010.
    [18] H. Şahan, Goktepe, H., Patat, Ş. , "A Novel Method to Improve the Electrochemical Performance of LiMn2O4 Cathode Active Material by CaCO3 Surface Coating," Journal of Materials Science and Technology, vol. 27, p. 415,2011.
    [19] A. K. Padhi, Nanjundaswamy, K. S. & Goodenough, J. B., "Phospho-olivines as Positive Electrode Materials for Rechargeable Lithium Batteries.," Journal of the Electrochemical Society, vol. 144, p. 1188,1997.
    [20] S. Wang, C. Zhou, Q. Zhou, G. Ni, and J. Wu, "Preparation of LiFePO4/C in a reductive atmosphere generated by windward aerobic decomposition of glucose," Journal of Power Sources,p. 5143, 2011.
    [21] S.-M. Oh, Oh, S.-W., Yoon, C.-S., Scrosati, B., Amine, K., Sun, Y.-K., "High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries " Advanced Functional Materials, vol. 20,p. 3260, 2010.
    [22] H. H. Li, Jin, J., Wei, J.P., Zhou, Z., Yan, J., "Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances " Electrochemistry Communications, vol. 11,p. 95, 2009.
    [23] K.. Saravanan, Vittal, J.J., Reddy, M.V., Chowdari, Balaya, P., "Storage performance of LiFe 1-xMn xPO 4 nanoplates (x=0, 0.5, and 1)," Journal of Solid State Electrochemistry, vol. 14,p.1155, 2010.
    [24] Y.-U. P. Jongsoon Kim, Dong-Hwa Seo,Jinsoo Kim, Sung-Wook Kim, and Kisuk Kang, "Mg and Fe Co-doped Mn Based Olivine Cathode Material for High Power Capability," J. Electrochem. Soc., vol. 158, ,p. A250, 2011.
    [25] K. Saravanan, Ramar, V., Balaya, P. , Vittal, J.J. , "Li(MnxFe1-x)PO4/C (x = 0.5, 0.75 and 1) nanoplates for lithium storage application," Journal of Materials Chemistry, vol. 21,p. 14925, 2011.
    [26] G. Li, Azuma, H., Tohda, M., "LiMnPO4 as the cathode for lithium batteries," Electrochemical and Solid-State Letters, vol. 5, 2002.
    [27] K. Amine, Yasuda, H., Yamachi, M., "Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries," Electrochemical and Solid-State Letters, vol. 3,p. A135, 2000.
    [28] J. Wolfenstine, Allen, J., "Ni3+/Ni2+ redox potential in LiNiPO4 " Journal of Power Sources, vol. 142,p. 389, 2005.
    [29] Z. Yang, J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, "Electrochemical energy storage for green grid," Chemical reviews, vol. 111, pp. 3577-613, May 11 2011.
    [30] Z. Gong and Y. Yang, "Recent advances in the research of polyanion-type cathode materials for Li-ion batteries," Energy & Environmental Science, vol. 4, p. 3223, 2011.
    [31] R. D. auh, Abraham, K.M., Pearson, G.F., Surprenant, J.K., Brummer, S.B., "LITHIUM/DISSOLVED SULFUR BATTERY WITH AN ORGANIC ELECTROLYTE. ," Journal of The Electrochemical Society, vol. 126,p.523, 1979.
    [32] H. Yamin, Peled, E., "Electrochemistry of a nonaqueous lithium/sulfur cell " Journal of Power Sources, vol. 9, p.281,1983.
    [33] 狩. 浩志, "【技術講座】電池開發呈多樣化,更加注重安全性能," in 《日經電子》, ed, 2012.
    [34] B. Scrosati, J. Hassoun, and Y.-K. Sun, "Lithium-ion batteries. A look into the future," Energy & Environmental Science, vol. 4, p. 3287, 2011.
    [35] W. Wilcke. (2012). The Battery 500 Project. Available: http://www.ibm.com/smarterplanet/us/en/smart_grid/article/battery500.html?lnk=ibmhpcs2/smarter_planet/energy/article/battery_500
    [36] M. Zanini, Basu, S., Fischer, J.E., "alternate synthesis and reflectivity spectrum of stage 1 lithium-graphite intercalation compound " Carbon, vol. 16, p.275,1978.
    [37] B. T. L. ink, "Rechargeable battery " US Patent, 1981.
    [38] 林素琴, "鋰電池材料發展分析 " 工研院電子報, 2009.
    [39] R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, "A review of advanced and practical lithium battery materials," Journal of Materials Chemistry, vol. 21, p. 9938, 2011.
    [40] A. Yoshino, "These ten years and feature of rechargeable battery materials," p. 110, 2003.
    [41] D. Guyomard and J. M. Tarascon, "Rechargeable Li1+xMn2O4carbon cells with a new electrolyte composition," Journal of the Electrochemical Society, vol. 140, pp. 3071-3081, 1993.
    [42] J. Barthel, R. Neueder, M. Poxleitner, J. Seitz-Beywl, and L. Werblan, "Conductivity of lithium perchlorate in propylene carbonate + acetonitrile mixtures from infinite dilution to saturation at temperatures from - 35 to 35°C," Journal of Electroanalytical Chemistry, vol. 344, pp. 249-267, 1993.
    [43] E. J. Plichta and W. K. Behl, "Rechargeable ambient temperature rocking-chair lithium cell employing a solution of lithium hexafluoroarsenate in acetonitrile as the electrolyte," Journal of the Electrochemical Society, vol. 140, pp. 46-49, 1993.
    [44] 黃裕豪, "鋰離子電池錫碳複合陽極材料的電化學行為," 國立台灣科技大學化學工程學系研究所碩士學位論文, 93學年度.
    [45] 呂學隆, "鋰電池電解液產業在兩岸的發展現況," 工業材料雜誌, vol. 289, 2011.
    [46] E. Peled, "The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model," J. Electrochem. Soc., vol. 126, p. 2047, 1979.
    [47] G. D. Peled E., Ardel G., Menachem C., Bar-Tow D. and and E. V, "Role of sei in lithium and lithium ion batteries " Mat. Res. Soc. Symp., vol. 393, pp. 209-221, 1995.
    [48] Golodnitsky.D. Penciner. J. Peled E. (1998). Anode/Electrolyte Interface. pp. 410-457.
    [49] M. C. Peled E., Bar-Tow D. and Melman A., "improved graphite anode for lithium-ion batteries: Chemically bonded solid electrolyte interface and nanochannel formation " J. Electrochem. Soc., vol. 143, pp. L4-L7, 1996.
    [50] P. E, "in Rechargeable Lithium and Lithium-Ion Batteries, The Electrochem. Soc. Proceedings Series, ed. by Megahed S., Barnett B. M. and Xie L. (1995), 94-28, 1.
    ."
    [51] Perla B. Balbuena (2004). Lithium-Ion Batteries Solid-Electrolyte Interphase.
    [52] 楊模樺, "鋰電池材料技術發展," 工業材料雜誌 2006, vol. 237:137.
    [53] K. M. Abraham, "Recent developments in secondary lithium battery technology," Journal of Power Sources, vol. 14, pp. 179-191, 1985.
    [54] K. H. Noriaki Kamaya, Yuichiro Yamakawa, Masaaki Hirayama, Ryoji Kanno,, T. K. Masao Yonemura, Yuki Kato, Shigenori Hama, Koji Kawamoto, and a. A. Mitsui, "A lithium superionic conductor," Nature Materials, vol. 10,p.682, 2011.
    [55] 趙崧傑、李富生、嚴佑展、楊乃璇、吳乃立, "鋰離子電池負極材料之發展," 化工, vol. 58, pp. 40-70, 2011.
    [56] M. Yoshio, T. Tsumura, and N. Dimov, "Electrochemical behaviors of silicon based anode material," Journal of Power Sources, vol. 146, pp. 10-14, 2005.
    [57] J. I. Yamaki, S. I. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa, "A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte," Journal of Power Sources, vol. 74, pp. 219-227, 1998.
    [58] K. Nishiyama, S. I. Tahara, Y. Uchida, S. Tanoue, and I. Taniguchi, "Structural differences in self-assembled monolayers of anthraquinone derivatives on silver and gold electrodes studied by cyclic voltammetry and in situ SERS spectroscopy," Journal of Electroanalytical Chemistry, vol. 478, pp. 83-91, 1999.
    [59] Z. I. Takehara, "Future prospects of the lithium metal anode," Journal of Power Sources, vol. 68, pp. 82-86, 1997.
    [60] J. D. Bernal, "The Structure of Graphite," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 106, pp. 749-773, 1924.
    [61] C.-H. K. Isao Mochida , Yozo Korai, "Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches," carbon, vol. 39,p.399, 2001.
    [62] 陳金銘, "高容量碳粉材料," 工業材料雜誌, vol. 100, p. 57, 1997.
    [63] A. N. Dey, "Electrochemical alloying of lithium in organic electrolytes," Journal of Electrochemistry Society, vol. 118, pp. 1547-1549., 1971.
    [64] M. Winter and J. O. Besenhard, "Electrochemical lithiation of tin and tin-based intermetallics and composites," Electrochimica Acta, vol. 45, pp. 31-50, 1999.
    [65] Y. Kwon, G. S. Park, and J. Cho, "Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots," Electrochimica Acta, vol. 52, pp. 4663-4668, 2007.
    [66] M. Wachtler, J. O. Besenhard, and M. Winter, "Tin and tin-based intermetallics as new anode materials for lithium-ion cells," Journal of Power Sources, vol. 94, pp. 189-193, 2001.
    [67] 顏榮賢, "鋰離子二次電池錫氧化物陽極材料製成及性質研究," 成功大學材料科學及工程學系碩士論文, 1999.
    [68] DR.Horstmann, "用於鋰離子電池之Si/SiOx/C 複合物," Taiwan Patent, 2008.
    [69] J. Wang, H. Zhao, J. He, C. Wang, and J. Wang, "Nano-sized SiOx/C composite anode for lithium ion batteries," Journal of Power Sources, vol. 196, pp. 4811-4815, 2011.
    [70] W.-R. Liu, Y.-C. Yen, H.-C. Wu, M. Winter, and N.-L. Wu, "Nano-porous SiO/carbon composite anode for lithium-ion batteries," Journal of Applied Electrochemistry, vol. 39, pp. 1643-1649, 2009.
    [71] R. Demir Cakan, M.-M. Titirici, M. Antonietti, G. Cui, J. Maier, and Y.-S. Hu, "Hydrothermal carbon spheres containing silicon nanoparticles: synthesis and lithium storage performance," Chemical Communications, p. 3759, 2008.
    [72] P. D. A. Magasinski, B. Hertzberg, A. Kvit, J. Ayala and G. Yushin, "High-performance lithium-ion anodes using a hierarchical bottom-up approach," Nature Materials,p.353, 2010.
    [73] Y. Yu, C. H. Chen, and Y. Shi, "A Tin-Based Amorphous Oxide Composite with a Porous, Spherical, Multideck-Cage Morphology as a Highly Reversible Anode Material for Lithium-Ion Batteries," Advanced Materials, vol. 19, pp. 993-997, 2007.
    [74] H. X. Zhang, C. Feng, Y. C. Zhai, K. L. Jiang, Q. Q. Li, and S. S. Fan, "Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries," Advanced Materials, vol. 21, pp. 2299-2304, 2009.
    [75] X. W. Lou, C. M. Li, and L. A. Archer, "Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage," Advanced Materials, vol. 21, pp. 2536-2539, 2009.
    [76] H. L. Zhang and D. E. Morse, "Kinetically controlled catalytic synthesis of highly dispersed metal-in-carbon composite and its electrochemical behavior," Journal of Materials Chemistry, vol. 19, pp. 9006-9011, 2009.
    [77] 徐雅亭、王復民、楊長榮, "鋰離子電池電解液的發展," 工業材料雜誌, vol. 237, p. 141, 2006.
    [78] H. B. Wu, J. S. Chen, H. H. Hng, and X. W. Lou, "Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries," Nanoscale, vol. 4, pp. 2526-42, Apr 21 2012.
    [79] 吳宇平、戴小兵、馬軍旗、程預江, "鋰離子電池應用與實踐," 化學工業出版社, 2004.
    [80] D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J. C. Jumas, and J. M. Tarascon, "Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries," Journal of Materials Chemistry, vol. 17, pp. 3759-3772, 2007.
    [81] P. Yang and J. M. Tarascon, "Towards systems materials engineering," Nature Materials, vol. 11, pp. 560-3, 2012.
    [82] Y. Xia, T. Sakai, T. Fujieda, M. Wada, and H. Yoshinaga, "Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries," Journal of the Electrochemical Society, vol. 148, p.A471,2001.
    [83] L. Fang and B. V. R. Chowdari, "Sn-Ca amorphous alloy as anode for lithium ion battery," Journal of Power Sources, vol. 97-98, pp. 181-184, 2001.
    [84] L. Beaulieu, D. Larcher, R. A. Dunlap, and J. R. Dahn, "Nanocomposites in the Sn-Mn-C system produced by mechanical alloying," Journal of Alloys and Compounds, vol. 297, pp. 122-128, 2000.
    [85] A. Trifonova, M. Wachtler, M. Winter, and J. O. Besenhard, "Sn-Sb and Sn-Bi alloys as anode materials for lithium-ion batteries," Ionics, vol. 8, pp. 321-328, 2002.
    [86] J. Yin, M. Wada, S. Yoshida, K. Ishihara, S. Tanase, and T. Sakai, "New Ag-Sn alloy anode materials for lithium-ion batteries," Journal of the Electrochemical Society, vol. 150,p.A1129, 2003.
    [87] H. Mukaibo, T. Sumi, T. Yokoshima, T. Momma, and T. Osaka, "Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries," Electrochemical and Solid-State Letters, vol. 6,p.A218, 2003.
    [88] R. Z. Hu, L. Zhang, X. Liu, M. Q. Zeng, and M. Zhu, "Investigation of immiscible alloy system of Al-Sn thin films as anodes for lithium ion batteries," Electrochemistry Communications, vol. 10, pp. 1109-1112, 2008.
    [89] H. Mukaibo, A. Yoshizawa, T. Momma, and T. Osaka, "Particle size and performance of SnS2 anodes for rechargeable lithium batteries," Journal of Power Sources, vol. 119-121, pp. 60-63, 2003.
    [90] G.-L. Xu, S.-R. Chen, J.-T. Li, F.-S. Ke, L. Huang, and S.-G. Sun, "A composite material of SnO2/ordered mesoporous carbon for the application in Lithium-ion Battery," Journal of Electroanalytical Chemistry, vol. 656, pp. 185-191, 2011.
    [91] S. Ding, Z. Wang, S. Madhavi, and X. W. Lou, "SBA-15 derived carbon-supported SnO2 nanowire arrays with improved lithium storage capabilities," Journal of Materials Chemistry,p.13860, 2011.
    [92] L. Zou, L. Gan, R. Lv, M. Wang, Z.-h. Huang, F. Kang, and W. Shen, "A film of porous carbon nanofibers that contain Sn/SnOx nanoparticles in the pores and its electrochemical performance as an anode material for lithium ion batteries," Carbon, vol. 49, pp. 89-95, 2011.
    [93] Y. Yu, L. Gu, C. Wang, A. Dhanabalan, P. A. van Aken, and J. Maier, "Encapsulation of Sn@carbon Nanoparticles in Bamboo-like Hollow Carbon Nanofibers as an Anode Material in Lithium-Based Batteries," Angewandte Chemie International Edition, vol. 48, pp. 6485-6489, 2009.
    [94] J. H. K. Vivekanand Kumar, Chandrashekhar Pendyala, Boris Chernomordik and Mahendra K. Sunkara*, "Gas-Phase, Bulk Production of Metal Oxide Nanowires and Nanoparticles Using a Microwave Plasma Jet Reactor," J. Phys. Chem., vol. 112, pp. 17750–17754, 2008.
    [95] P. Wu, N. Du, H. Zhang, J. Yu, Y. Qi, and D. Yang, "Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries," Nanoscale, vol. 3, p. 746, 2011.
    [96] J.Ye,H. Zhang, R. Yang, X. Li, and L. Qi, "Morphology-Controlled Synthesis of SnO2Nanotubes by Using 1D Silica Mesostructures as Sacrificial Templates and Their Applications in Lithium-Ion Batteries," Small, vol. 6, pp. 296-306, 2010.
    [97] X. W. Lou, J. S. Chen, P. Chen, and L. A. Archer, "One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties," Chemistry of Materials, vol. 21, pp. 2868-2874, 2009.
    [98] B. Zhang, X. Yu, C. Ge, X. Dong, Y. Fang, Z. Li, and H. Wang, "Novel 3-D superstructures made up of SnO2@C core-shell nanochains for energy storage applications," Chemical Communications, vol. 46, p. 9188, 2010.
    [99] J. Hassoun, G. Derrien, S. Panero, and B. Scrosati, "A Nanostructured Sn-C Composite Lithium Battery Electrode with Unique Stability and High Electrochemical Performance," Advanced Materials, vol. 20, pp. 3169-3175, 2008.
    [100] G. Derrien, J. Hassoun, S. Panero, and B. Scrosati, "Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries," Advanced Materials, vol. 19, pp. 2336-2340, 2007.
    [101] P. Anastas. 12 principles of green chemistry. Available: http://www.epa.gov/greenchemistry/pubs/about_gc.html
    [102] M.-Y. Cheng, C.-L. Hwang, C.-J. Pan, J.-H. Cheng, Y.-S. Ye, J. F. Rick, and B.-J. Hwang, "Facile synthesis of SnO2-embedded carbon nanomaterials via glucose-mediated oxidation of Sn particles," Journal of Materials Chemistry, vol. 21, p. 10705, 2011.
    [103] M. M. S. Arava Leela Mohana Reddy, Sanketh R. Gowda and Pulickel M. Ajayan, "Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries," Nano Lett, vol. 9, 2009.
    [104] L. Ji, A. J. Medford, and X. Zhang, "Porous carbon nanofibers loaded with manganese oxide particles: Formation mechanism and electrochemical performance as energy-storage materials," Journal of Materials Chemistry, vol. 19, p. 5593, 2009.
    [105] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, pp. 197-200, 2005.
    [106] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-dimensional atomic crystals," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 10451-10453, July 26, 2005 2005.
    [107] 野. 哲生, "実用化競爭に入ったグラフェン、「神の材料」の応用例が続點 " 2011.
    [108] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Electronic Confinement and Coherence in Patterned Epitaxial Graphene," Science, vol. 312, pp. 1191-1196, May 26, 2006 2006.
    [109] I. Forbeaux, Themlin, J.-M.,Debever,J.-M. , "Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure," Physical Review B - Condensed Matter and Materials Physics, vol. 58, 1998.
    [110] 莊鎮宇, "石墨烯簡介與熱裂解化學氣相合成 方法合成石墨烯的近期發展," 物理, vol. 33, 2011.
    [111] W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958.
    [112] J. D. William S. Hummers, Mich,, "pat2798878-hummers methode," U.S Patent, 1954.
    [113] X. Huang, X. Qi, F. Boey, and H. Zhang, "Graphene-based composites," Chemical Society Reviews, vol. 41, p. 666, 2012.
    [114] S.-L. Chou, J.-Z. Wang, M. Choucair, H.-K. Liu, J. A. Stride, and S.-X. Dou, "Enhanced reversible lithium storage in a nanosize silicon/graphene composite," Electrochemistry Communications, vol. 12, pp. 303-306, 2010.
    [115] H. Xiang, K. Zhang, G. Ji, J. Y. Lee, C. Zou, X. Chen, and J. Wu, "Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability," Carbon, vol. 49, pp. 1787-1796, 2011.
    [116] S. Yang, X. Feng, S. Ivanovici, and K. Mullen, "Fabrication of Graphene-Encapsulated Oxide Nanoparticles: Towards High-Performance Anode Materials for Lithium Storage," Angewandte Chemie International Edition, vol. 49, pp. 8408-8411, 2010.
    [117] K.-H. Kim, D.-W. Jung, V. H. Pham, J. S. Chung, B.-S. Kong, J. K. Lee, K. Kim, and E.-S. Oh, "Performance enhancement of Li-ion batteries by the addition of metal oxides (CuO, Co3O4)/solvothermally reduced graphene oxide composites," Electrochimica Acta, vol. 69, pp. 358-363, 2012.
    [118] D. V. K. Daniela C. Marcano, Jacob M. Berlin, Alexander Sinitskii, Zhengzong Sun, and L. B. A. Alexander Slesarev, Wei Lu, and James M. Tour*, "Improved Synthesis of Graphene Oxide," ACS Nano,p.4806, 2010.
    [119] M. Kikuchi, Y. Ikezawa, and T. Takamura, "Surface modification of pitch-based carbon fibre for the improvement of electrochemical lithium intercalation," Journal of Electroanalytical Chemistry, vol. 396, pp. 451-455, 1995.
    [120] C. L. Campion, W. Li, and B. L. Lucht, "Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries," Journal of The Electrochemical Society, vol. 152, p. A2327, 2005.
    [121] S. H. Huh, “Physics and Applications of Graphene”: Korea Institute of Ceramic Engineering and Technology, 2011.
    [122] P. Meduri, E. Clark, E. Dayalan, G. U. Sumanasekera, and M. K. Sunkara, "Kinetically limited de-lithiation behavior of nanoscale tin-covered tin oxide nanowires," Energy & Environmental Science, vol. 4, p. 1695, 2011.
    [123] M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, and T. Wang, "Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions," Journal of Materials Chemistry, vol. 21, p. 1673, 2011.
    [124] C. Zhong, J. Wang, Z. Chen, and H. Liu, "SnO2–Graphene Composite Synthesized via an Ultrafast and Environmentally Friendly Microwave Autoclave Method and Its Use as a Superior Anode for Lithium-Ion Batteries," The Journal of Physical Chemistry C, vol. 115, pp. 25115-25120, 2011.
    [125] E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, and I. Honma, "Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries," Nano Letters, vol. 8, pp. 2277-2282, 2008.
    [126] A. V. Murugan, T. Muraliganth, and A. Manthiram, "Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage," Chemistry of Materials, vol. 21, pp. 5004-5006, 2009.
    [127] W.E.C.l.a.r.k.W.D.Bond"REDUCTION OF CUPRIC OXIDE BY HYDROGEN," 1960.
    [128] W.-j. Cui, F. Li, H.-j. Liu, C.-x. Wang, and Y.-y. Xia, "Core–shell carbon-coated Cu6Sn5 prepared by in situ polymerization as a high-performance anode material for lithium-ion batteries," Journal of Materials Chemistry, vol. 19, p. 7202, 2009.
    [129] D. D. PERLMUTTER. JACOB MU "THERMAL DECOMPOSITION OF CARBONATES, CARBOXYLATES,OXALATES, ACETATES, FORMATES, AND HYDROXIDES," Thermochimica Acta, vol. 49, 1981.

    無法下載圖示 全文公開日期 2017/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE