簡易檢索 / 詳目顯示

研究生: 林益新
YI-SHIN LIN
論文名稱: 藍藻蛋白-葡聚醣與藍藻蛋白-硫化葡聚醣形成3D組織支架之探討
Preparation of cyanophycin-dextran and cyanophycin-dextran sulfate conjugates
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 陳崇賢
Chorng-Shyan Chern
方翠筠
Tsuei-Yun Fang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 81
中文關鍵詞: 藍藻蛋白
外文關鍵詞: cyanophycin
相關次數: 點閱:179下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藍藻蛋白是由非核醣體合成的蛋白質,經由基因重組生產的藍藻蛋白在構造上以天門冬胺酸(aspartic acid)為骨架,在側鏈上接有精胺酸(arginine)以及離胺酸(lysine);葡聚醣是由葡萄糖分子構成的多醣,具有良好的親水性以及生物相容性;硫化葡聚醣是具有生物可降解性和擁有類似於肝素(heparin)的生物相容性的聚陰離子,以醣類為骨架接有帶負電荷的硫酸基的高分子。本研究目的是以戊二醛進行交聯反應製備不同比例的藍藻蛋白-葡聚醣與藍藻蛋白-硫化葡聚醣3D的組織支架,期望組織支架擁有藍藻蛋白、葡聚醣和硫化葡聚醣的特性。
    實驗將葡聚醣以及硫化葡聚醣做個別的修飾後,再以化學鍵結將兩個修飾過後高分子分別與藍藻蛋白接枝,形成更具生物相容性的高分子。將葡聚醣進行開環使其醛基的比例增加,以利後續與藍藻蛋白做接枝,並期望接枝率接近於10%;硫化葡聚醣則是讓其接上羧基,以利後續與藍藻蛋白做接枝,並對其做TNBSA (2,4,6 - Trinitrobenzene Sulfonic Acid assay)測定接枝情形;對兩者接枝材料進行MTT毒性測試。最後再以不同重量比混合,在96 well中以戊二醛進行交聯反應,形成3D的組織支架,對其進行探討。
    實驗結果顯示,在葡聚醣-藍藻蛋白組別接枝率大約為10%;硫化葡聚醣-藍藻蛋白組別也利用TNBSA間接確認其接枝;在毒性測試方面,材料並無顯著的毒性;測量3D組織支架體積方面,發現在硫化葡聚醣-藍藻蛋白含量較多時,體積明顯的會比較小;由含水率可以觀察到,無論在哪種比例皆能在短時間內達到很龐大的含水率,從數據可以看出葡聚醣-藍藻蛋白對含水率的影響相較於葡聚醣-藍藻蛋白來的明顯;藉由Scanning electron microscope (SEM)觀察不同比例組織支架,可發現到不同比例形成的組織支架,表面與切面皆呈現孔洞型態。
    綜上所述,所形成的3D組織支架具有良好親水性以及細胞遷入時適當的孔洞大小,期望未來投入細胞做觀察。


    Cyanophycin, a non-ribosomal synthesis protein, can be produced by recombinant Escherichia coli. The polymer consists of a polyaspartic acid backbone with arginine and lysine as a side chain. Dextran is a polysaccharide composed by glucose molecules, and is capable of good hydrophilicity and biocompatibility. Dextran sulfate is capable of good biodegradability and it has biocompatible polyanion as heparin. Its structure is a polysaccharide which has negatively charged sulfate groups. In this study, we prepared differnet ratios of cyanophycin - dextran/ cyanophycin - dextran sulfate composite 3D scaffolds by cross-linking reaction with glutaraldehyde. We expect that scaffolds have their properties.
    We modified the dextran and dextran sulfate by different method, and then the two polymers which had been modified were grafted with cyanophycin by chemical bonding in order to make more biocompatible polymer. We made the dextran have more aldehyde group in order to make it graft with cyanophycin. We except that the grafting ratio is up to 10%. We also made the dextran sulfate have carboxyl group in order to make it graft with cyanopycin. The graft information of cyanophycin - dextran sulfate was determind by TNBSA. We detected the toxicity of the two polymers (cyanophycin-dextran and cyanophycin dextran sulfate) by the MTT assay. Finally, we mixed cyanophycin-dextran and cyanophycin dextran sulfate in different weight ratio, and then the mixed polymer solution were cross-linked with glutaraldehyde to form 3D scaffold.
    The result showed that the cyanophycin-dextran had the grafting ratio about 10%. We confirmed that the cyanophycin-dextran sulfate had grafted with each other. We had information that cyanophycin-dextran and cyanophycin-dextran sulfate was not toxic from MTT assay.
    We measured the volume of 3D scaffolds which have different contain of cyanophycin-dextran and cyanophycin-dextran sulfate. The data showed that if cyanophycin-dextran sulfate contains large proportion in the scaffold, the volume will be relatively small. The swelling ratio of scaffolds showed that each scaffold had massive swelling ratio in short time and it also showed that cyanophycin-dextran had more influence than cyanophycin-dextran sulfate on the swelling ratio. The SEM data showed that both surface and cross section had pores.
    In conclusion, the scaffold had good hydrophilicity. The scaffolds will be good for cells to migrate because of their proper pore size. We expect that it can use in cell culture.

    中文摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 X 第一章 緒論 1 1.1前言 1 1.2研究動機 3 第二章 文獻回顧 4 2.1藍藻蛋白 4 2.1.1藍藻蛋白結構 4 2.1.2基因重組後菌株的藍藻蛋白生產 5 2.1.3藍藻蛋白的應用 7 2.2葡聚醣 8 2.2.1葡聚醣介紹 8 2.2.2葡聚醣結構 8 2.2.3葡聚醣的生產 9 2.2.4葡聚醣的運用 9 2.3硫化葡聚醣 10 2.3.1硫化葡聚醣介紹 10 2.3.2硫化葡聚醣的生產 10 2.3.3硫化葡聚醣的運用 11 2.4組織支架 12 三、實驗 14 3.1 藥品清單 14 3.2藥品配置 17 3.2.1二合一抗生素 17 3.2.2 Luria-Bertani Medium plate (LB medium plate) 17 3.2.3 Luria-Bertani Medium (LB medium) 17 3.2.4 Terrific Broth (TB medium ) 18 3.2.5 Lactose solution 18 3.2.6 Dulbecco's modified Eagle's medium(DMEM low glucose) 19 3.2.7 1X PBS 19 3.2.8 Trypsin/EDTA/PBS 19 3.2.9 MTT solution (5mg/mL) 19 3.2.10 sodium periodate solution (100 mg/mL) 20 3.2.11 DNS reagent (10 mL) 20 3.2.12 100mM boric acid solution 20 3.2.13 Sodium Phosphate buffer pH = 6 20 3.2.14 TNBSA reaction buffer (0.1 M sodium bicarbonate) 21 3.2.15 0.5% glutaraldehyde solution 21 3.2.16 9,10-Phenanthrenequinone solution 21 3.3實驗設備 21 3.4實驗步驟 23 3.4.1 藍藻蛋白生產 23 3.4.1.1將菌株培養在LB medium plate 23 3.4.1.2轉養至2 mL LB medium 23 3.4.1.3轉養至60 mL LB medium 24 3.4.1.4轉養至含2 L TB medium的發酵槽 24 3.4.1.5收菌 25 3.4.2 藍藻蛋白純化 25 3.4.2.1 破菌取得藍藻蛋白 25 3.4.2.2 水溶性藍藻蛋白純化 26 3.4.2.3 非水溶性藍藻蛋白純化 27 3.4.3葡聚醣開環反應 28 3.4.4葡聚醣開環後醛基定量 29 3.4.5已修飾後葡聚醣與藍藻蛋白接枝反應 30 3.4.6以氯乙酸修飾硫化葡聚醣 32 3.4.7已修飾硫化葡聚醣與藍藻蛋白接枝反應 33 3.4.8 用TNBS assay分析已修飾硫化葡聚醣與藍藻蛋白接枝產物 35 3.4.9 藍藻蛋白接枝葡聚醣與藍藻蛋白接枝硫化葡聚醣之細胞毒性測試 36 3.4.10 藍藻蛋白接枝葡聚醣與藍藻蛋白接枝硫化葡聚醣經戊二醛成3D組織支架 38 3.4.11 3D組織支架螢光染色 39 3.4.12 3D組織支架含水率測試 40 3.4.13 3D組織支架的掃描式電子顯微鏡觀察 41 第四章 結果與討論 42 4.1 葡聚醣修飾以及接枝藍藻蛋白 42 4.1.1葡聚醣的修飾(醛基定量) 42 4.1.2經修飾葡聚醣與藍藻蛋白接枝 43 4.2 硫化葡聚醣修飾接枝藍藻蛋白 43 4.3複合物的毒性測定 44 4.3不同比例(DEX-CGP:DSCA-CGP) 3D組織支架體積測量 45 4.4不同比例(DEX-CGP:DSCA-CGP) 3D組織支架含水率測定 45 4.5不同比例(DEX-CGP:DSCA-CGP) 3D組織支架螢光染色 46 4.6不同比例(DEX-CGP:DSCA-CGP) 3D組織支架SEM攝影 46 第五章 結論 48 圖表 49 文獻參考 65

    1.Demoor, M., et al., Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochimica et Biophysica Acta (BBA)-General Subjects, 2014. 1840(8): p. 2414-2440.
    2.Krehenbrink, M., F.-B. Oppermann-Sanio, and A. Steinbüchel, Evaluation of non-cyanobacterial genome sequences for occurrence of genes encoding proteins homologous to cyanophycin synthetase and cloning of an active cyanophycin synthetase from Acinetobacter sp. strain DSM 587. Archives of Microbiology, 2002. 177(5): p. 371-380.
    3.Mooibroek, H., et al., Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Applied Microbiology and Biotechnology, 2007. 77(2): p. 257-267.
    4.Frommeyer, M., K. Bergander, and A. Steinbüchel, Guanidination of Soluble Lysine-Rich Cyanophycin Yields a Homoarginine-Containing Polyamide. Applied and Environmental Microbiology, 2014. 80(8): p. 2381-2389.
    5.Tseng, W.C., et al., Assessments of growth conditions on the production of cyanophycin by recombinant Escherichia coli strains expressing cyanophycin synthetase gene. Biotechnology progress, 2012. 28(2): p. 358-363.
    6.Frey, K.M., et al., Technical-scale production of cyanophycin with recombinant strains of Escherichia coli. Applied and environmental microbiology, 2002. 68(7): p. 3377-3384.
    7.Hai, T., F.B. Oppermann-Sanio, and A. Steinbüchel, Purification and characterization of cyanophycin and cyanophycin synthetase from the thermophilic Synechococcus sp. MA19. Vol. 181. 1999. 229-236.
    8.Zhang, Y., et al., Production of nitrogen‐based platform chemical: cyanophycin biosynthesis using recombinant Escherichia coli and renewable media substitutes. Journal of Chemical Technology and Biotechnology, 2013. 88(7): p. 1321-1327.
    9.Wiefel, L. and A. Steinbüchel, Solubility behavior of cyanophycin depending on lysine content. Applied and environmental microbiology, 2014. 80(3): p. 1091-1096.
    10.Frommeyer, M. and A. Steinbüchel, Increased Lysine Content Is the Main Characteristic of the Soluble Form of the Polyamide Cyanophycin Synthesized by Recombinant Escherichia coli. Applied and Environmental Microbiology, 2013. 79(14): p. 4474-4483.
    11.Elbahloul, Y., et al., Protamylasse, a residual compound of industrial starch production, provides a suitable medium for large-scale cyanophycin production. Applied and environmental microbiology, 2005. 71(12): p. 7759-7767.
    12.Leopold, C.S. and D.R. Friend, In vivo pharmacokinetic study for the assessment of poly (L-aspartic acid) as a drug carrier for colon-specific drug delivery. Journal of pharmacokinetics and biopharmaceutics, 1995. 23(4): p. 397-406.
    13.Sallam, A. and A. Steinbüchel, Dipeptides in nutrition and therapy: cyanophycin-derived dipeptides as natural alternatives and their biotechnological production. Applied microbiology and biotechnology, 2010. 87(3): p. 815-828.
    14.Monsan, P., et al., Homopolysaccharides from lactic acid bacteria. International Dairy Journal, 2001. 11(9): p. 675-685.
    15.Khalikova, E., P. Susi, and T. Korpela, Microbial Dextran-Hydrolyzing Enzymes: Fundamentals and Applications. Microbiology and Molecular Biology Reviews, 2005. 69(2): p. 306-325.
    16.Werning, M.L., et al., Biosynthesis, Purification and Biotechnological Use of Exopolysaccharides Produced by Lactic Acid Bacteria. 2012: INTECH Open Access Publisher.
    17.Monchois, V., R.-M. Willemot, and P. Monsan, Glucansucrases: mechanism of action and structure–function relationships. FEMS Microbiology Reviews, 1999. 23(2): p. 131-151.
    18.Nácher-Vázquez, M., et al., Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydrate Polymers, 2015. 124(0): p. 292-301.
    19.Kotharia, D., et al., Dextran and Food Application. 2014.
    20.Mai, K., et al., Water soluble cationic dextran derivatives containing poly(amidoamine) dendrons for efficient gene delivery. Carbohydr Polym, 2015. 123: p. 237-45.
    21.McCann, J., et al., Poly(vinylamine) microgel–dextran composite hydrogels: Characterisation; properties and pH-triggered degradation. Journal of Colloid and Interface Science, 2015. 449(0): p. 21-30.
    22.Chen, Y., V. Mohanraj, and J. Parkin, Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide. Letters in Peptide Science, 2003. 10(5-6): p. 621-629.
    23.Chaubet, F., et al., Synthesis and structure—anticoagulant property relationships of functionalized dextrans: CMDBS. Carbohydrate Polymers, 1995. 28(2): p. 145-152.
    24.Papy-Garcia, D., et al., Nondegradative sulfation of polysaccharides. Synthesis and structure characterization of biologically active heparan sulfate mimetics. Macromolecules, 2005. 38(11): p. 4647-4654.
    25.Gonzalez-McQuire, R., et al., Fabrication of hydroxyapatite sponges by dextran sulphate/amino acid templating. Biomaterials, 2005. 26(33): p. 6652-6656.
    26.Tan, M.L., et al., The performance of doxorubicin encapsulated in chitosan–dextran sulphate microparticles in an osteosarcoma model. Biomaterials, 2010. 31(3): p. 541-551.
    27.Wang, Y., et al., Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials, 2014. 35(32): p. 8960-8969.
    28.Suh, J.-K.F. and H.W. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000. 21(24): p. 2589-2598.
    29.Guo, Y., et al., Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. Journal of Materials Science: Materials in Medicine, 2012. 23(9): p. 2267-2279.
    30.Maia, J., et al., Insight on the periodate oxidation of dextran and its structural vicissitudes. Polymer, 2011. 52(2): p. 258-265.
    31.Hyon, S.H., et al., Low cytotoxic tissue adhesive based on oxidized dextran and epsilon‐poly‐l‐lysine. Journal of Biomedical Materials Research Part A, 2014. 102(8): p. 2511-2520.
    32.Saqib, A.A.N. and P.J. Whitney, Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars. Biomass and Bioenergy, 2011. 35(11): p. 4748-4750.
    33.Khan, I.M., A. Ahmad, and M.F. Ullah, Synthesis, spectroscopic investigations, antimicrobial and DNA binding studies of a new charge transfer complex of o-phenylenediamine with 3,5-dinitrosalicylic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013. 102(0): p. 82-87.
    34.Varma, R.S. and R. Dahiya, Sodium borohydride on wet clay: Solvent-free reductive amination of carbonyl compounds using microwaves. Tetrahedron, 1998. 54(23): p. 6293-6298.
    35.Hermanson, G.T., Bioconjugate techniques. 2013: Academic press.
    36.Sun, G. and C.-C. Chu, Self-Assembly of Chemically Engineered Hydrophilic Dextran into Microscopic Tubules. ACS Nano, 2009. 3(5): p. 1176-1182.
    37.Hermanson, G.T., Zero-Length Crosslinkers. 2013: p. 259-273.
    38.Palmer, D. and T. Peters, Automated determination of free amino groups in serum and plasma using 2, 4, 6-trinitrobenzene sulfonate. Clinical Chemistry, 1969. 15(9): p. 891-901.
    39.Obi, I., Application of the 2, 4, 6-Trinitrobenzene-l-Sulfonic Acid (TNBS) Method for determination of available lysine in maize seed. Agricultural and Biological Chemistry, 1982. 46(1): p. 15-20.
    40.Monteiro Jr, O.A.C. and C. Airoldi, Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. International Journal of Biological Macromolecules, 1999. 26(2–3): p. 119-128.
    41.Khor, E., Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials, 1997. 18(2): p. 95-105.
    42.Smith, R.E. and R. MacQuarrie, A sensitive fluorometric method for the determination of arginine using 9,10-phenanthrenequinone. Analytical Biochemistry, 1978. 90(1): p. 246-255.
    43.MAGUN, B.E. and J.W. KELLY, A new fluorescent method with phenanthrenequinone for the histochemical demonstration of arginine residues in tissues. Journal of Histochemistry & Cytochemistry, 1969. 17(12): p. 821-827.
    44.Jing, Y., et al., Dextran sulfate inhibits staurosporine-induced apoptosis in Chinese hamster ovary (CHO) cells: Involvement of the mitochondrial pathway. Process Biochemistry, 2011. 46(1): p. 427-432.

    無法下載圖示 全文公開日期 2020/08/03 (校內網路)
    全文公開日期 2035/08/03 (校外網路)
    全文公開日期 2035/08/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE