簡易檢索 / 詳目顯示

研究生: 林佩穎
Pei-Ying Lin
論文名稱: 利用藍藻蛋白-聚乙烯亞胺接合物進行基因傳遞
Gene delivery mediated by cyanophycin- polyethylenimine conjugates
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 方翠筠
Tsuei-Yun Fang
陳燿騰
Yaw-Terng Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 84
中文關鍵詞: 藍藻蛋白支鍊型聚乙烯亞胺葡萄糖基因傳遞蛋白質傳遞
外文關鍵詞: cyanophycin, branched polyethyleneimine, glucose, vector, protein delivery
相關次數: 點閱:257下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藍藻蛋白是一種經生物體合成的天然聚合物。經基因重組後結構以天門冬胺酸(aspartic acid)為主鍊,精氨酸(arginine)與離氨酸(lysine)為側鍊所組成,而離氨酸上含有一級胺容易進行化學修飾。支鍊型聚乙烯亞胺是已知廣泛研究的非病毒型陽離子聚合物基因載體,但當分子量增加、轉染效率提高時會對細胞產生高毒性。
    因此本研究以葡萄糖作為交聯劑,接合藍藻蛋白與不同分子量的聚乙烯亞胺合成載體。期望能降低細胞毒性、維持轉染效率並找出最適當合成比例及最適當使用重量比。結果發現當聚乙烯亞胺與葡萄糖為等莫爾比時有最佳轉染效率,而經藍藻蛋白修飾後的聚乙烯亞胺合成載體,在適當比例下能夠有效降低轉染後細胞相對毒性,並維持與PEI25kDa相近的轉染效率。
    在物性測試方面複合物表面帶有低於PEI25kDa的正電位,並隨載體中聚乙烯亞胺分子量、莫爾比及複合物中核酸/高分子重量比提高,粒徑下降、表面電位增加;而在強負電環境下載體仍可保有20-50%的核酸含量,與控制組相比有提高穩定性的功效。最後由蛋白質傳遞結果得知S-CGP/1PEI25kDa/1GC與S-CGP/4PEI25kDa/4GC兩組載體都具有良好的蛋白質傳遞效果,未來可改變蛋白質/高分子重量比或是以不同蛋白質對細胞進行傳遞測試提升載體應用範圍。


    Cyanophycin is a kind of biopolymers. By genetic recombination, the main chain of cyanophycin is aspartic acid, and the side chain is composed of arginine and lysine. The lysine contains primary amines, and allows chemical modifications. Branched polyethyleneimine (BPEI) is a cationic polymer, and has been extensively studied as a non-viral vector. However, as molecular weight increases and transfection efficiency is enhanced, PEI will produce high cytotoxicity.
    In this study, cyanophycin was cross-linked with BPEI of different molecular weights by glucose. It was expected to mitigate cytotoxicity, maintain transfection efficiency, and eventually obtain an optimal mixing ratio and weight ratio. The results suggest that the optimal transfection efficiency occurs when the molar ratio of BPEI monomer and glucose equals to 1. Moreover, BPEI modified with cyanophycin can effectively mitigate cytotoxicity and maintain transfection efficiency which is close to the control group, BPEI25kDa, at the optimal ratio.
    From the physical properties tests, the surface of vectors have positive zeta potentials, which are lower than the PEI25kDa. With the increases in molecular weight and the molar ratio of PEI in the vector, the surface zeta potential rises but the hydrodynamic size of the vector decreases. The vectors still retain 20-50% of nucleic acids under negatively charged conditions. Compared with the control group, the vectors increased the stability. Finally, from the results of protein delivery, both S-CGP/1PEI25kDa/1GC and S-CGP/4PEI25kDa/4GC have excellent efficiency. For future studies, changing the weight ratio of protein/polymer or using different proteins will extend the applications of the carrier.

    目錄 中文摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 IX 表目錄 XII 第一章 緒論 1 第二章 文獻回顧 3 2.1 藍藻蛋白簡介 3 2.1.1 藍藻蛋白結構 3 2.1.2 基因重組後菌株所生產之藍藻蛋白 4 2.2 基因治療 6 2.2.1 物理傳遞系統 7 2.2.2 病毒型載體系統 9 2.2.3 非病毒型載體系統 10 2.3 支鏈型聚乙烯亞胺(branched polyethylenimine, PEI)之特性 12 2.4 非病毒型載體傳遞障礙 14 2.5 葡萄糖交聯應用 16 2.6 β-半乳醣苷酶活性測定 18 2.6.1 X-gal染色法 18 2.6.2 ONPG定量比色法 19 2.6.3 FDG及MUG螢光檢測法 20 2.7 細胞毒性測試(MTT) 22 第三章 實驗 24 3.1 實驗材料 24 3.1.1 菌株 24 3.1.2 細胞株 24 3.1.3 細胞培養液 24 3.1.4 抗生素 24 3.1.5 其它 24 3.2 實驗藥品 25 3.3 實驗儀器 26 3.4 溶液配製 27 3.5 實驗步驟 32 3.5.1 藍藻蛋白的生產 32 3.5.2 製備及純化質體核酸 37 3.5.3 藍藻蛋白與聚乙烯亞胺之接合反應 42 3.5.4 細胞培養與轉染效率之測定 44 3.5.5 細胞毒性測量 48 3.5.6 高分子對質體核酸之包覆測試 49 3.5.7 高分子/核酸複合物之粒徑及表面電位量測 51 3.5.8 高分子/核酸複合物之穩定性測試 51 3.5.9 高分子/蛋白質複合物之蛋白質傳遞測試 52 第四章 結果與討論 53 4.1 質體核酸的蛋白質表現效率 53 4.1.1 以不同比例葡萄糖交聯藍藻蛋白與PEI2kDa之載體 53 4.1.2以葡萄糖交聯不同分子量聚乙烯亞胺與藍藻蛋白合成之載體 55 4.2 細胞毒性分析 57 4.2.1以不同比例葡萄糖交聯藍藻蛋白與PEI2kDa之載體 57 4.2.2以葡萄糖交聯不同分子量聚乙烯亞胺與藍藻蛋白合成之載體 58 4.3 高分子對質體核酸之包覆測試 59 4.4 高分子/核酸複合物之粒徑與表面電位分析 60 4.4.1高分子/核酸複合物粒徑大小 60 4.4.2高分子/核酸複合物表面電位 61 4.5 高分子/核酸複合物之穩定性分析 62 4.6 高分子/蛋白質複合物之蛋白質傳遞測試 63 第五章 結論 64 參考文獻 65 圖表 68 圖目錄 圖 1 藍綠藻菌中藍藻蛋白化學結構 4 圖 2 經基因重組方式得到藍藻蛋白之結構 5 圖 3 支鏈型聚乙烯亞胺分子結構 14 圖 4 載體運輸到標的細胞前所需克服之障礙 15 圖 5 載體進入細胞後傳遞核酸所需克服之障礙 15 圖 6 葡萄糖交聯反應示意圖 17 圖 7 β-半乳醣苷酶水解X-gal反應示意圖 21 圖 8 β-半乳醣苷酶水解ONPG反應示意圖 21 圖 9 β-半乳醣苷酶水解乳醣末端非還原性的s-D-galactosides示意圖 22 圖 10 β-半乳醣苷酶水解FDG及MUG反應示意圖 22 圖 11 MTT還原之反應機制 23 圖 12質體核酸pEGFP-C1基因圖譜 41 圖 13質體核酸gWiz-β-galactosidase基因圖譜 42 圖 14 BamHⅠ切割位點示意圖 42 圖 15以不同比例葡萄糖交聯藍藻蛋白與聚乙烯亞胺(2kDa)合成載體進行pEGFP-C1轉染,選取核酸/高分子重量比為1:150作代表觀察 71 圖 16 以葡萄糖交聯不同分子量聚乙烯亞胺與藍藻蛋白合成載體進行pEGFP-C1轉染,選取中間比例的核酸/高分子重量比作代表觀察 74 圖 17以不同比例葡萄糖交聯藍藻蛋白與聚乙烯亞胺(2kDa)合成載體並以三種重量比與gWiz-β-galactosidase形成複合物對CHO細胞的轉染效率比較圖 78 圖 18 以不同比例葡萄糖交聯藍藻蛋白及聚乙烯亞胺(2kDa)合成載體並以三種重量比與gWiz-β-galactosidase形成複合物對CHO細胞轉染後的毒性測試比較圖 78 圖 19以葡萄糖交聯不同分子量聚乙烯亞胺與藍藻蛋白合成載體並以不同重量比與gWiz-β-galactosidase形成複合物對CHO細胞的轉染效率比較圖 79 圖 20以葡萄糖交聯不同分子量聚乙烯亞胺與藍藻蛋白合成載體並以不同重量比與gWiz-β-galactosidase形成複合物對CHO細胞轉染後的毒性測試比較圖 79 圖 21 挑選出最適當的7組複合物比例對DNA進行包覆測試 80 圖 22 挑選出最適當的7組比例在低鹽溶液中形成高分子/核酸複合物所測得複合物之粒徑大小 80 圖 23挑選出最適當的7組比例在低鹽溶液中形成高分子/核酸複合物所測得複合物之表面電位大小 81 圖 24 挑選出最適當的7組比例在體內模擬環境下不同時間點的載體穩定性比較圖 81 圖 25挑選三種比例之載體與蛋白質形成複合物,設定不同重量比對CHO細胞進行蛋白質傳遞。 82 表目錄 表 1 水溶性藍藻蛋白、PEI2KDa及葡萄糖交聯反應之莫爾比 68 表 2 水溶性藍藻蛋白、不同分子量之聚乙烯亞胺及葡萄糖交聯反應之莫爾比 68 表 3 不同比例合成高分子與核酸形成複合物之重量比 69 表 4 聚乙烯亞胺與最適當的7組高分子/核酸複合物比例 70 表 5 高分子與蛋白質形成複合物之重量比 70

    1. 醫藥基因生物技術教學資源中心主編, 後基因體時代之生物技術. 2003(教育部顧問室).
    2. El-Aneed, A., An overview of current delivery systems in cancer gene therapy. J Control Release, 2004. 94(1): p. 1-14.
    3. He, L., et al., Multilayer dual-polymer-coated upconversion nanoparticles for multimodal imaging and serum-enhanced gene delivery. ACS Appl Mater Interfaces, 2013. 5(20): p. 10381-10388.
    4. Moghimi, S.M., et al., A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther, 2005. 11(6): p. 990-5.
    5. Steinle, A., K. Bergander, and A. Steinbuchel, Metabolic engineering of Saccharomyces cerevisiae for production of novel cyanophycins with an extended range of constituent amino acids. Appl Environ Microbiol, 2009. 75(11): p. 3437-3446.
    6. Borzi, A., Le comunicazioni intracellulari delle Nostochinee. . Malpighia, 1887: p. 74-203.
    7. Hai, T., F.B. Oppermann-Sanio, and A. Steinbuchel, Purification and characterization of cyanophycin and cyanophycin synthetase from the thermophilic Synechococcus sp. MA19. FEMS Microbiol Lett, 1999. 181(2): p. 229-236.
    8. Mackerras, A.H., N.M.d. Chazal, and G.D. Smith, Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308. General Microbiology, 1990. 136: p. 2057-2065.
    9. Simon, R.D., Cyanophycin Granules from the Blue-Green Alga Anabaena cylindrica: A Reserve Material Consisting of Copolymers of Aspartic Acid and Arginine. Proc Natl Acad Sci U S A, 1971. 68(2): p. 265-267.
    10. Ziegler, K., et al., Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). Eur J Biochem, 1998. 254(1): p. 154-159.
    11. Frey, K.M., et al., Technical-scale production of cyanophycin with recombinant strains of Escherichia coli. Appl Environ Microbiol, 2002. 68(7): p. 3377-3384.
    12. Gauci, C., D. Jenkins, and M.W. Lightowlers, Strategies for optimal expression of vaccine antigens from Taeniid cestode parasites in Escherichia coli. Mol Biotechnol, 2011. 48(3): p. 277-289.
    13. Aboulmagd, E., F.B. Oppermann-Sanio, and A. Steinbuchel, Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308. Arch Microbiol, 2000. 174(5): p. 297-306.
    14. Mooibroek, H., et al., Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Appl Microbiol Biotechnol, 2007. 77(2): p. 257-267.
    15. Wong, S.Y., J.M. Pelet, and D. Putnam, Polymer systems for gene delivery—Past, present, and future. Progress in Polymer Science, 2007. 32(8–9): p. 799-837.
    16. Wang, W., et al., Non-viral gene delivery methods. Curr Pharm Biotechnol, 2013. 14(1): p. 46-60.
    17. Niidome, T. and L. Huang, Gene therapy progress and prospects: nonviral vectors. Gene Ther, 2002. 9(24): p. 1647-1652.
    18. Wang, S., et al., The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine, 2008. 26(17): p. 2100-2110.
    19. Uchida, M., et al., Transfection by particle bombardment: Delivery of plasmid DNA into mammalian cells using gene gun. Biochimica et Biophysica Acta (BBA) - General Subjects, 2009. 1790(8): p. 754-764.
    20. McTaggart, S. and M. Al-Rubeai, Retroviral vectors for human gene delivery. Biotechnol Adv, 2002. 20(1): p. 1-31.
    21. Thomas, M. and A.M. Klibanov, Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol, 2003. 62(1): p. 27-34.
    22. Ahn, C.H., et al., Biodegradable poly(ethylenimine) for plasmid DNA delivery. J Control Release, 2002. 80(1-3): p. 273-282.
    23. Kabanov, A.V., Taking polycation gene delivery systems from in vitro to in vivo. Pharm Sci Technolo Today, 1999. 2(9): p. 365-372.
    24. Oku, N., et al., A novel non-viral gene transfer system, polycation liposomes. Adv Drug Deliv Rev, 2001. 52(3): p. 209-218.
    25. Yue, Y. and C. Wu, Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomaterials Science, 2013. 1(2): p. 152-170.
    26. Cherng, J.Y., Investigation of DNA spectral conformational changes and polymer buffering capacity in relation to transfection efficiency of DNA/polymer complexes. J Pharm Pharm Sci, 2009. 12(3): p. 346-356.
    27. Godbey, W.T., K.K. Wu, and A.G. Mikos, Poly(ethylenimine) and its role in gene delivery. J Control Release, 1999. 60(2-3): p. 149-160.
    28. Kircheis, R., L. Wightman, and E. Wagner, Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev, 2001. 53(3): p. 341-358.
    29. Lungwitz, U., et al., Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm, 2005. 60(2): p. 247-266.
    30. Ulubayram, K., et al., Cytotoxicity evaluation of gelatin sponges prepared with different cross-linking agents. J Biomater Sci Polym Ed, 2002. 13(11): p. 1203-1219.
    31. Digenis, G.A., T.B. Gold, and V.P. Shah, Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance. J Pharm Sci, 1994. 83(7): p. 915-921.
    32. Cortesi, R., C. Nastruzzi, and S.S. Davis, Sugar cross-linked gelatin for controlled release: microspheres and disks. Biomaterials, 1998. 19(18): p. 1641-1649.
    33. Sanduh, S.S., Recombinant DNA Technology. 2010: I K International Publishing House.
    34. J. Sambrook, D.W.R., Molecular Cloning: A Laboratory Manual, Third Edition 2001, New York: Cold Spring Harbor Laboratory Press.
    35. Miller, J.H., Experiments in Molecular Genetics: Assay of β-Galactosidase. 1972, Cold spring harbor: cold spring harbor laboratory press.
    36. Armenta, R., et al., Improved sensitivity in homogeneous enzyme immunoassays using a fluorogenic macromolecular substrate: an assay for serum ferritin. Anal Biochem, 1985. 146(1): p. 211-219.
    37. Huang, Z.J., Kinetic fluorescence measurement of fluorescein di-beta-D-galactoside hydrolysis by beta-galactosidase: intermediate channeling in stepwise catalysis by a free single enzyme. Biochemistry, 1991. 30(35): p. 8535-8540.
    38. F.W.D.Rost, Fluorescence microscopy , volume II 1995, Cambridge: Cambridge University Press.
    39. Stockert, J.C., et al., MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem, 2012. 114(8): p. 785-796.
    40. Peng, L., B. Wang, and P. Ren, Reduction of MTT by flavonoids in the absence of cells. Colloids Surf B Biointerfaces, 2005. 45(2): p. 108-111.
    41. Lu, H., et al., Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS One, 2014. 9(1): p. e84703.

    無法下載圖示 全文公開日期 2019/07/30 (校內網路)
    全文公開日期 2034/07/30 (校外網路)
    全文公開日期 2034/07/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE