簡易檢索 / 詳目顯示

研究生: MUHAMMAD SYAHRIL MUBAROK
MUHAMMAD SYAHRIL MUBAROK
論文名稱: 矩陣轉換器驅動內藏式永磁同步電動機控制系統的預測控制器研製
Implementation of Predictive Controllers for a Matrix-Converter Driving IPMSM Control System
指導教授: 劉添華
Tian-Hua Liu
口試委員: 廖聰明
Chang-Ming Liaw
楊勝明
Sheng-Ming Yang
劉益華
Yi-Hua Liu
劉添華
Tian-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 141
中文關鍵詞: 矩陣轉換器預測控制器內藏式永磁同步電動機
外文關鍵詞: matrix converter, predictive controller, IPMSM
相關次數: 點閱:389下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矩陣轉換器驅動系統已逐漸成為未來發展的趨勢。本論文提出預測控制器應用在矩陣轉換器為基礎的內藏式永磁同步電動機控制系統。文中討論不具模式的電流,以及具模式的速度及位置控制器應用在內藏式永磁同步電動機,而不具模式的電流控制器不需要電器參數,例如:電感、電阻與反電勢,且它的響應在一虛擬直流鏈電壓工作範圍內並不會產生惡化,僅需要定子電流的不同狀態來預測未來的取樣電流。另一方面,具模式的速度及位置控制器的實現藉由馬達參數和拉格朗日函數演算法來完成。藉以改善動態響應,包括:暫態響應、加載響應及追蹤響應。此外,這些預測控制器很容易由數位信號處理器實現。
    實驗結果說明本文所提的驅動系統具有較比例積分控制器更優良的性能。本文使用32-bit TMS-320LF-2407A的數位信號處理器來執行預測控制器,因此硬體電路相當簡單,實測結果說明所提的驅動系統與理論分析想當符合,並可達到寬廣的控制範圍,由1 r/min到1900 r/min以及滿意的定位控制由 度到1 度360。本文所提出的驅動系統可以簡單的應用在工業界由於控制器是一個具系統化設計的過程。


    The matrix converter has gradually become a new trend for motor drives. This thesis proposes predictive controllers for a matrix-converter driving interior permanent magnet synchronous motor control system. A model-free predictive current controller, and a model-based predictive speed and position controllers for an interior permanent magnet synchronous motor are investigated here. The proposed model-free predictive current controller does not require any motor parameters such as inductance, resistance, and back EMF, and its performance does not deteriorate because of variations in the virtual DC-link voltage. Only the stator current difference is used to predict the future sampling current. On the other hand, the proposed model-based predictive speed and position controllers are implemented by using motor parameters and Laguerre function algorithm.
    The proposed predictive controller can improve the dynamic responses, including transient responses, load disturbance responses, and tracking responses. In addition, these predictive controllers are easy to implement by using a digital signal processing.
    Experimental results show the proposed drive system has better performance than the PI controller. A 32-bit digital signal processor, TMS-320LF-2407A, is used to execute the predictive controllers. As a result, the hardware is simple. Several experimental results show that the proposed drive system can validate the theoretical analysis and achieve a wide operated speed range from 1 r/min to 1900 r/min and satisfactory position control from 1 to 360. The proposed drive system is easily applied in industry due to its systematic design procedure.

    TABLE OF CONTENTS Page ABSTRACT iii 中文摘要 iv DEDICATION v ACKNOWLEDGEMENTS vi NOMENCLATURE vii TABLE OF CONTENTS xi LIST OF FIGURES xiv LIST OF TABLES xvii CHAPTER I INTRODUCTION 1 1.1 Background 1 1.2 Basic Principle of Predictive Control 2 1.3 Literature Review 3 1.4 Aim of the Thesis 4 1.5 Outline 5 CHAPTER II MATRIX CONVERTER DRIVE SYSTEMS 6 2.1 Introduction 6 2.2 Bidirectional Switch Configurations 8 2.3 Principle of a Matrix Converter 10 2.4 Modulation Algorithm 14 2.4.1 Modulation Method for Virtual Rectifier 15 2.4.2 Modulation Method for Virtual Inverter 17 2.4.3 Switching Pattern of Indirect Modulation 19 CHAPTER III INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 23 3.1 Introduction 23 3.2 Structure and Characteristics of Permanent Magnet Motors 24 3.2.1 Surface-Mounted Permanent Magnet Synchronous Motor 25 3.2.2 Interior Permanent Magnet Synchronous Motor 27 3.3 Mathematical Model of IPMSM 28 3.3.1 Representation in a-b-c Stationary Reference Frame 28 3.3.2 Clarke and Park Transformations 31 3.3.3 Representation in d-q Synchronous Reference Frame 33 3.4 Equivalent Circuit of IPMSM 35 CHAPTER IV MODEL-FREE PREDICTIVE CURRENT CONTROL 36 4.1 Introduction 36 4.2 Discrete-Time Mathematical Model 37 4.3 Model-Free Predictive Current Control 40 CHAPTER V MODEL PREDICTIVE CONTROL 48 5.1 Introduction 48 5.2 Model-Based Predictive Speed Control 49 5.2.1 State-Space Model of IPMSM Speed Control Systems 51 5.2.2 Augmented Model of IPMSM Speed Control Systems 52 5.2.3 Minimization of Cost Function Using Laguerre Function 55 5.3 Model-Based Predictive Position Control 59 5.3.1 State-Space Model of IPMSM Position Control Systems 61 5.3.2 Augmented Model of IPMSM Position Control Systems 63 5.3.3 Laguerre Function Used for Model Predictive Control Systems 65 5.3.3.1 Minimization of Cost Function 68 CHAPTER VI IMPLEMENTATION 73 6.1 Introduction 73 6.2 Hardware 75 6.3 Software Algorithm 77 6.3.1 Main Program 77 6.3.2 Interrupt Program 78 CHAPTER VII EXPERIMENTAL RESULTS 82 7.1 Introduction 82 7.2 Experimental Results 83 7.2.1 Model-Free Predictive Current Control 83 7.2.2 Model-Based Predictive Speed Control 93 7.2.3 Model-Based Predictive Position Control 100 CHAPTER VIII CONCLUSIONS AND FUTURE RESEARCH 113 8.1 Conclusions 113 8.2 Future Research 114 REFERENCES 115 VITA 121

    REFERENCES

    [1] J. Rodriguez and P. Cortes, Predictive Control of Power Converters and Electrical Drives , Wiley, 2012.
    [2] J. W. Kolar, M. Baumann, F. Schafmeister, and H. Ertl, "Novel three-phase AC-DC-AC sparse matrix converter," IEEE APEC-2002, pp. 777-791.
    [3] P. Wheeler, J. Clare, L. Empringham, M. Apap, and M. Bland, "Matrix converters," Power Eng. J., vol. 16, no. 6, pp. 273-282, Dec. 2002.
    [4] J. W. Kolar, T. Friedli, J. Rodriguez, and P. W. Wheeler, "Review of three-phase PWM AC–AC converter topologies," IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 4988-5006, Nov. 2011.
    [5] A. Agrawal and V. Agarwal, "Delta modulated cyclo-inverter," IEEE INTELEC-2008, pp. 1-6.
    [6] P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham, and A. Weinstein, "Matrix converters: a technology review," IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 276-288, Apr. 2002.
    [7] L. Huber and D. Borojevic, "Space vector modulated three-phase to three-phase matrix converter with input power factor correction," IEEE Trans. Ind. Appl., vol. 31, no. 6, pp. 1234-1246, Nov./Dec. 1995.
    [8] C. Klumpner, P. Nielsen, I. Boldea, and F. Blaabjerg, "A new matrix converter motor (MCM) for industry applications," IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 325-335, Apr. 2002.
    [9] J. W. Kolar, F. Schafmeister, S. D. Round, and H. Ertl, "Novel three-phase AC–AC sparse matrix converters," IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1649-1661, Sep. 2007.
    [10] P. Pillay and R. Krishnan, "Modeling, simulation, and analysis of permanent-magnet motor drives I-the permanent-magnet synchronous motor drive," IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, Mar./Apr. 1989.
    [11] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, "Comparison of induction and PM synchronous motor drives for EV application including design examples," IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2322-2332, Nov./Dec. 2012.
    [12] L. Parsa and H. A. Toliyat, "Five-phase permanent-magnet motor drives," IEEE Trans. Ind. Appl., vol. 41, no. 1, pp. 30-37, Jan./Feb. 2005.
    [13] P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J. Rodriguez, "Predictive control in power electronics and drives," IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4312-4324, Dec. 2008.
    [14] S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, "Model predictive control-a simple and powerful method to control power converters," IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1826-1838, Jun. 2009.
    [15] J. B. Rawlings, "Tutorial overview of model predictive control," IEEE Control Syst., vol. 20, no. 3, pp. 38-52, Jun. 2000.
    [16] J. Rodriguez et al., "State of the art of finite control set model predictive control in power electronics," IEEE Trans. Ind. Inform., vol. 9, no. 2, pp. 1003-1016, May 2013.
    [17] M. Uddin, S. Mekhilef, and M. Rivera, "Experimental validation of minimum cost function-based model predictive converter control with efficient reference tracking," IET Power Electron., vol. 8, no. 2, pp. 278-287, Feb. 2015.
    [18] A. Abbaszadeh, D. A. Khaburi, H. Mahmoudi, and J. Rodriguez, "Simplified model predictive control with variable weighting factor for current ripple reduction," IET Power Electron., vol. 10, no. 10, pp. 1165-1174, Aug. 2017.
    [19] R. Vargas, U. Ammann, J. Rodriguez, and J. Pontt, "Predictive strategy to control common-mode voltage in loads fed by matrix converters," IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4372-4380, Dec. 2008.
    [20] R. Vargas, P. Cortes, U. Ammann, J. Rodriguez, and J. Pontt, "Predictive control of a three-phase neutral-point-clamped inverter," IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2697-2705, Oct. 2007.
    [21] R. Vargas, U. Ammann, and J. Rodriguez, "Predictive approach to increase efficiency and reduce switching losses on matrix converters," IEEE Trans. Power Electron., vol. 24, no. 4, pp. 894-902, Apr. 2009.
    [22] S. Muller, U. Ammann, and S. Rees, "New time-discrete modulation scheme for matrix converters," IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1607-1615, Dec. 2005.
    [23] R. Vargas, J. Rodriguez, U. Ammann, and P. W. Wheeler, "Predictive current control of an induction machine fed by a matrix converter with reactive power control," IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4362-4371, Dec. 2008.
    [24] H. Mahmoudi, M. J. Lesani, and D. A. Khabouri, "Online fuzzy tuning of weighting factor in model predictive control of PMSM," IEEE IFSC-2013, pp. 1-5.
    [25] T. M. Wolbank, R. Stumberger, A. Lechner, and J. Machl, "A novel control strategy for optimal inverter switching frequency associated with minimal current ripple using single step predictive current control," IEEE ECPEA-2009, pp. 1-9.
    [26] J. Rodriguez, M. Rivera, J. W. Kolar, and P. W. Wheeler, "A review of control and modulation methods for matrix converters," IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 58-70, Jan. 2012.
    [27] P. Correa, J. Rodriguez, M. Rivera, J. R. Espinoza, and J. W. Kolar, "Predictive control of an indirect matrix converter," IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1847-1853, Jun. 2009.
    [28] M. Rivera et al., "Review of predictive control methods to improve the input current of an indirect matrix converter," IET Power Electron., vol. 7, no. 4, pp. 886-894, Apr. 2014.
    [29] M. Kadota, S. Lerdudomsak, S. Doki, and S. Okuma, "A novel current control system of IPMSM operating at high speed based on model predictive control," IEEE PCC-2007, pp. 1315-1319.
    [30] D. H. Yim, B. G. Park, R. Y. Kim, and D. S. Hyun, "A predictive current control associated to EKF for high performance IPMSM drives," IEEE APEC-2011, pp. 1010-1016.
    [31] L. Rovere, A. Formentini, A. Gaeta, P. Zanchetta, and M. Marchesoni, "Sensorless finite-control set model predictive control for IPMSM drives," IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5921-5931, Sep. 2016.
    [32] J. Beerten, J. Verveckken, and J. Driesen, "Predictive direct torque control for flux and torque ripple reduction," IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 404-412, Jan. 2010.
    [33] C. K. Lin, T. H. Liu, J. T. Yu, L. C. Fu, and C. F. Hsiao, "Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique," IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 667-681, Feb. 2014.
    [34] S. Bolognani, S. Bolognani, L. Peretti, and M. Zigliotto, "Design and implementation of model predictive control for electrical motor drives," IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1925-1936, Jun. 2009.
    [35] D. Zamecnik and L. Vesely, "Model predictive speed controller of permanent magnet synchronous machine," IEEE CINTI-2011, pp. 379-383.
    [36] N. Hoffmann, S. Thomsen, and F. W. Fuchs, "Model based predictive speed control of a drive system with torsional loads — A practical approach,". IEEE EPE-PEMC-2010, pp. T5-149-T5-156.
    [37] P. A. Egiguren, O. B. Caramazana, and J. A. C. Etxeberria, "Linear generalized predictive position control of induction motor drives," IEEE IECON-2011, pp. 1922-1927.
    [38] L. Gan and L. Wang, "Cascaded model predictive position control of induction motor with constraints," IEEE IECON-2013, pp. 2656-2661.
    [39] A. Alesina and M. Venturini, "Solid-state power conversion: a fourier analysis approach to generalized transformer synthesis," IEEE Trans. Circuits and Syst., vol. 28, no. 4, pp. 319-330, Apr. 1981.
    [40] A. Alesina and M. Venturini, "Intrinsic amplitude limits and optimum design of 9-switches direct PWM AC-AC converters," IEEE PESC-1988, pp. 1284-1291.
    [43] J. Oyama, T. Higuchi, E. Yamada, T. Koga, and T. Lipo, "New control strategy for matrix converter," IEEE PESC-1989, pp. 360-367.
    [44] L. Zhong, M. F. Rahman, W. Y. Hu, and K. W. Lim, "Analysis of direct torque control in permanent magnet synchronous motor drives," IEEE Trans. Power Electron., vol. 12, no. 3, pp. 528-536, May 1997.
    [45] D. P. M. Cahill and B. Adkins, "The permanent-magnet synchronous motor," Proc. IEE -Power Eng., vol. 109, no. 48, pp. 483-491, Dec. 1962.
    [46] S. K. Dwivedi, M. Laursen, and S. Hansen, "Voltage vector based control for PMSM in industry applications," IEEE ISIE-2010, pp. 3845-3850.
    [47] P. Pillay and R. Krishnan, "Modeling, simulation, and analysis of permanent-magnet motor drives II-the brushless DC motor drive," IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 274-279, Mar./Apr. 1989.
    [48] K. Belda, "Study of predictive control for permanent magnet synchronous motor drives," IEEE MMAR-2012, pp. 522-527.
    [49] T. Rudnicki, R. Czerwinski, and A. Frechowicz, "Permanent magnet synchronous motor control driver," IEEE MIXDES-2011, pp. 545-548.
    [50] G. Pellegrino, A. Vagati, P. Guglielmi, and B. Boazzo, "Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application," IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 803-811, Feb. 2012.
    [51] Seung-Ki Sul, Control of Electric Machine Drive Systems, Wiley, 2011.
    [52] T. M. Jahns, G. B. Kliman, and T. W. Neumann, "Interior permanent-magnet synchronous motors for adjustable-speed drives," IEEE Trans. Ind. Appl., vol. IA-22, no. 4, pp. 738-747, Jul. 1986.
    [53] J. L. Shi, T. H. Liu, and Y. C. Chang, "Position control of an interior permanent-magnet synchronous motor without using a shaft position sensor," IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1989-2000, Jun. 2007.
    [54] C. K. Lin, T. H. Liu, and C. H. Lo, "Sensorless interior permanent magnet synchronous motor drive system with a wide adjustable speed range," IET Electr. Power Appl., vol. 3, no. 2, pp. 133-146, Mar. 2009.
    [55] M. N. Uddin and R. S. Rebeiro, "Fuzzy logic based speed controller and adaptive hysteresis current controller based IPMSM drive for improved dynamic performance," IEEE IEMDC-2011, pp. 1-6.
    [56] N. Nakao and K. Akatsu, "A simple unipolar excitation strategy for switched reluctance motors by using PWM current control," IEEE ECCE-2013, pp. 1111-1117.
    [57] M. Gu, S. Ogasawara, and M. Takemoto, "Novel PWM schemes with multi SVPWM of sensorless IPMSM drives for reducing current ripple," IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6461-6475, Sep. 2016.
    [58] B. C. Kuo and F. Golnaraghi, Automatic Control Systems, Wiley, 2009.
    [59] L. Wang. Model Predictive Control System Design and Implementation Using MATLAB. Springer-Verlag London, 1st edition, 2009.
    [60] W. C. Wang, T. H. Liu, and Y. Syaifudin, "Model predictive controller for a micro-PMSM-based five-finger control system," IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3666-3676, Jun. 2016.

    QR CODE