簡易檢索 / 詳目顯示

研究生: 蔡忠原
Chung-Yuan Tsai
論文名稱: 應用電流斜率及反電動勢混合法之無位置偵測永磁同步電動機驅動系統
A Position Sensorless Permanent-Magnet Synchronous Motor Drive Based on Current-Slope and Back-EMF Hybrid Approach
指導教授: 劉添華
Tian-Hua Liu
口試委員: 廖聰明
Chang-Ming Liaw
林法正
Faa-Jeng Lin
楊宗銘
Chung-Ming Young
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 158
中文關鍵詞: 混合式轉軸角度估測方法預測型控制器內藏式永磁同步電動機
外文關鍵詞: hybrid position estimation method, predictive controller, interior permanent magnet synchronous motor
相關次數: 點閱:296下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討以混合式方法實現轉軸角度的估測,進一步達成無轉軸偵測元件內藏式永磁同步電動機的閉迴路速度控制。為了達到寬廣的控速範圍,文中使用兩種不同的轉軸角度估測方法,在靜止及低速時,測量零電壓向量產生的電流斜率,並利用電流斜率推導轉軸角度,使得電動機在靜止狀態下能夠順利啟動。在中、高轉速時,則使用延伸型反電動勢法估測轉軸角度,本文所提的方法,可以使驅動系統在0 r/min至3000 r/min間進行速度控制,並且具有良好的響應。
    為了改善驅動系統的動態響應,本文提出預測型速度控制器,達成快速的暫態響應、良好的加載能力及優越的追蹤響應。此外,為了避免輸入電流產生飽和,文中亦探討將電流命令的限制條件融入性能指標,改善控制器因限制條件導致系統響應不佳的問題。
    本文使用TMS320F28379D數位訊號處理器,並使用三角積分調變的類比/數位轉換器,進行轉軸角/速度的估測及控制法則。實驗結果與理論分析相當吻合,說明本文所提方法的正確性及可行性。


    This thesis proposes a hybrid approach to estimate the rotor position for a sensorless IPMSM close-loop speed control system. To achieve a wide adjustable speed range, two different sensorless methods are used. At the standstill and low speed, the current-slope measuring method of the zero voltage vector is used to estimate the rotor position. As a result, the IPMSM starts from standstill smoothly. At the middle and high speed, the extend back-EMF method is used to estimate the rotor position. The proposed method can operate the IPMSM drive system at different speeds from 0 r/min to 3000 r/min with good responses.
    To improve the dynamic responses of the proposed drive system, a predictive speed-loop controller is proposed to achieve fast transient responses, good load disturbance responses, and good tracking responses. In addition, to avoid the saturation of the input current, this paper also discusses the limitation of current input into the performance index to improve the poor response due to the controller’s constraints.
    A digital signal processor, TMS320F28379D with delta-sigma A/D converters are used as a control center to execute the rotor position/speed estimation algorithm and the control algorithm. Experimental results can validate the theoretical analysis to show the correctness and feasibility of this proposed method in the thesis.

    中文摘要......I Abstract.....II 目錄.........III 圖目錄.......VI 表目錄.......XI 符號索引.....XII 第一章 緒論.....1 1.1 背景.....1 1.2 文獻回顧 .....2 1.3 研究動機 .....6 1.4 論文大綱 .....7 第二章 內藏式永磁同步電動機.....8 2.1 簡介.....8 2.2 結構及特性.....8 2.3數學模型.....11 第三章 驅動系統.....19 3.1 簡介.....19 3.2 變頻器及脈波寬度調變.....20 3.2.1變頻器.....20 3.2.1脈波寬度調變.....22 3.3 永磁同步電動機的驅控.....25 3.3.1最大轉矩/安培控制.....26 3.3.2弱磁控制.....27 第四章 轉軸角度估測.....32 4.1 簡介 32 4.2 零電壓向量電流斜率估測方法.....34 4.2.1基本原理.....34 4.2.2估測器的設計.....41 4.2.3初始角度估測及極性判別.....47 4.2.4電流斜率的擷取方法.....52 4.2.5應用其他電動機的可行性.....53 4.3延伸型反電動勢估測方法.....55 4.3.1基本原理.....55 4.3.2估測器的設計.....57 4.3.3估測器的穩定性分析.....60 4.4轉軸角/速度估測器設計.....62 第五章 預測型控制器.....64 5.1 簡介.....64 5.2預測型速度控制器.....65 5.2.1基本原理.....65 5.2.2限制條件.....69 第六章 系統研製.....76 6.1 簡介.....76 6.2硬體電路.....78 6.2.1 變頻器與驅動電路.....78 6.2.2 電流偵測電路.....81 6.2.3 電源供應電路.....83 6.2.4 數位信號處理器.....84 6.3軟體程式.....86 6.3.1 主程式.....86 6.3.2 中斷程式.....88 第七章 實測結果.....90 7.1 簡介.....90 7.2 實測.....92 第八章 結論與未來研究方向.....131 參考文獻.....132

    [1] M. Malinowski, M. P. Kazmierkowski, and A. M. Trzynadlowski, “A comparative study of control techniques for PWM rectifiers in AC adjustable speed drives,” IEEE Transactions on Power Electronics, vol. 18, no. 6, pp. 1390-1396, Nov. 2003.
    [2] S. Williamson, M. Lukic, and A. Emadi, “Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling development of PMSM drives for hybrid electric car applications,” IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 730-740, May 2006.
    [3] T. Song, A. Ninomiya, and T. Ishigohka, “Experimental study on induction motor with superconducting secondary conductors,” IEEE Transactions on Applied Superconductivity, vol. 17, no. 2, pp. 1611-1614, June 2007.
    [4] B. Karanayil, M. F. Rahman, and C. Grantham, “Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensorless induction motor drive,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 167-176, Feb. 2007.
    [5] M. Sanada, K. Hiramoto, S. Morimoto, and Y. Takeda, “Torque ripple improvement for synchronous reluctance motor using an asymmetric flux barrier arrangement” IEEE Transactions on Industrial Electronics, vol. 40, no. 4, pp. 1076-1082, July/Aug. 2004.
    [6] S. H. Li and Z. G. Liu, “Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3050-3059, Aug. 2009.
    [7] A. M. E. Refaie, “Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 107-121, Jan. 2010.
    [8] S. Bolognani, L. Tubiana, and M. Zigliotto, “Extended Kalman filter tuning in sensorless PMSM drives,” IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1741-1747, Nov/Dec. 2003.
    [9] H. Lee and J. Lee, “Design of iterative sliding mode observer for sensorless PMSM control,” IEEE Transactions on Control Systems Technologys, vol. 21, no. 4, pp. 1394-1399, July 2013.
    [10] S. K. Sul, Y. C. Kwon, and Y.G. Lee, “Sensorless control of IPMSM for last 10 years and next 5 years,” CES Transactions on Electrical Machines and Systems, vol. 1, no. 2, pp. 91-99, June 2017.
    [11] S. C. Yang and Y. L. Hsu, “Full speed region sensorless drive of permanent-magnet machine combining saliency-based and back-EMF-based drive,” IEEE Transactions on Industrial Electronics, vol. 64, no. 5, pp. 1092-1101, Feb. 2017.
    [12] S. Chi, Z. Zhang, and L. Xu, “Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications,” IEEE Transactions on Industry Applications, vol. 45, no. 5, pp. 582-590, Mar/Apr. 2017.
    [13] Z. Chen , M. Tomita, S. Doki, and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors,” IEEE Transactions on Industrial Electronics, vol. 50, no. 2, pp. 288-259, Apr. 2003.
    [14] S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Transactions on Industry Applications, vol. 38, no. 4, pp. 1054-1061, July/Aug. 2002.
    [15] M. J. Corley and R. D. Lorenz, “Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds,” IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 784-789, July/Aug. 1998.
    [16] J. G. Hu, J. B. Liu, and L. Y. Xu, “Eddy current effects on rotor position estimation and magnetic pole identification of PMSM at zero and low speeds,” IEEE Transactions on Power Electronics, vol. 23, no. 5, pp. 2565-2575, Sep. 2008.
    [17] J. H. Jang, S. K. Sul, J. I. Ha, K. Ide, and M. Sawamura, “Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency,” IEEE Transactions on Industry Applications, vol. 39, no. 4, pp. 1031-1039, July/Aug. 2000.
    [18] G. Xie, K. Lu, S. K. Dwivedi, J. R. Rosholm, and F. Blaabjerg, “Minimum-voltage vector injection method for sensorless control of PMSM for low-speed operations, ”IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1785-1794, Feb. 2016.
    [19] D. Kim, Y. C. Kwon, S. K. Sul, J. H. Kim, and R. S. Yu, “Suppression of injection voltage disturbance for high-frequency square-wave injection sensorless drive with regulation of induced high-frequency current ripple, ”IEEE Transactions on Industry Applications, vol. 52, no. 1, pp. 302-312, Jan/Feb. 2016.
    [20] T. Matsuo and T. A. Lipo, “Rotor position detection scheme for synchronous reluctance motor based on current measurements,” IEEE Transactions on Industry Applications, vol. 31, no. 4, pp. 860-868, July/Aug. 1995.
    [21] J. L. Shi, T. H. Liu, and Y. C. Chang, “Position control of an interior permanent-magnet synchronous motor without using a shaft position sensor,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1989-2000, Aug. 2007.
    [22] Y. Hua, M. Sumner, G. Asher, Q. Gao, and K. Saleh, “Improved sensorless control of a permanent magnet machine using fundamental pulse width modulation excitation,” IET Electric Power Applications, vol. 5, Iss. 4, pp. 359-370, Apr. 2010.
    [23] M. X. Bui, M. F. Rahman, and D. Xiao, “Sensorless position estimation parameter identification and control integration for permanent magnet synchronous machines using current derivative measurements,” IEEE IPEC-2018, pp. 4174-4180, May 2018.
    [24] Y. S. Jeong, R. D. Lorenz, T. M. Jahns, and S. K. Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods,” IEEE Transactions on Industry Applications, vol. 41, no. 1, pp. 38-45, Jan/Feb. 2005.
    [25] M. Tursini, R. Petrella, and F. Parasiliti, “Initial rotor position estimation method for pm motors,” IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1630-1640, Nov/Dec. 2003.
    [26] X. Zhang, L. Sun, K. Zhao, and L. Sun, “Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques,” IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 1358-1365, Mar. 2013.
    [27] T. D. Do, H. H. Choi, and J. W. Jung, “SDRE-based near optimal control system design for PM synchronous motor,” IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4063-4074, Nov. 2012.
    [28] S. K. Kim, J. S. Lee, and K. B. Lee, “Self-tuning adaptive speed controller for permanent magnet synchronous motor,” IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1493-1506, Feb. 2017.
    [29] S. Bolognani, S. Bolognani, L. Perett, and M. Zigliotto, “Design and implementation of model predictive control for electrical motor drives,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1925-1936, June 2009.
    [30] C. K. Lin, T. H. Liu, J. T. Yu, L. C. Fu, and C. F. Hsiao, “Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique,” IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 667-680, Feb. 2014.
    [31] M. S. Mubarok and T. H. Liu, “Implementation of predictive controllers for matrix-converter-based interior permanent magnet synchronous motor position control systems,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.7, no. 1, pp. 261-273, Mar. 2019.
    [32] S. Morimoto, M. Sanada, and Y. Takeda,, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Transactions on Industry Applications, vol. 30, no. 14, pp. 920-926, July/Aug. 1994.
    [33] J. Lemmens, P. Vanassche, and J. Driesen, “PMSM drive current and voltage limiting as a constraint optimal control problem,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 12, pp. 326-338, June 2015.
    [34] S. M. Sue and C. T. Pan, “Voltage-constraint-tracking-based field-weakening control of IPM synchronous motor drives,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 340 -347, Jan. 2008.
    [35] A. M. Trzynadlowski, N. Patriciu, F. Blaabjerg, and J. K. Pedersen, “A hybrid current-source/voltage-source power inverter circuit,” IEEE Transactions on Power Electronics, vol. 16, no. 6, pp. 866-871, Nov. 2001.
    [36] S. A. S. Grogan, D. G. Holmes, and B. P. McGrath, “High-performance voltage regulation of current source inverters,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2439-2448, Sep. 2011.
    [37] H. Zhao, Yan Li, T. Q. Zheng, X. Huang, and Z. Zi, “A sine-like hysteresis current control method in application of three-phase voltage source converter,” IEEE ECCE-2017, pp. 603-609, Oct. 2017.
    [38] S. Kouro, P. Cortés, R. Vargas, U. Ammann, and J. Rodríguez, “Model predictive control—a simple and powerful method to control power converters,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1826-1838, June 2009.
    [39] H. A. Toliyat and S. Campbell, DSP-Based Electromechanical Motion Control, CRC Press, New York, 2004.
    [40] J. L. Chen, T. H. Liu, and C. L. Chen, “Implementation of a novel high-performance sensorless IPMSM control system,” IEEE ICIT-2010, pp. 361-366, Mar. 2010.
    [41] G. L. Wang, J. Y. Kuang, N. N. Zhao, G. Q. Zhang , and D. G. Xu, “Rotor position estimation of PMSM in low-speed region and standstill using zero-voltage vector injection,” IEEE Transactions on Power Electronics, vol. 33, no. 9, pp. 7948-7958, Sep. 2018.
    [42] R. Raute, C. Caruana, J. Cilia, C. S. Staines, and M. Sumner, “A zero speed operation sensorless PMSM drive without additional test signal injection,” IEEE ECPEA-2007, pp. 616-620, Sep. 2007.
    [43] R. Raute, C. Caruana, C. S. Staines, J. Cilia, M. Sumner, and G. M. Asher, “Analysis and compensation of inverter nonlinearity effect on a sensorless pmsm drive at very low and zero speed operation,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 4065-4074, Dec. 2010.
    [44] Y. Hosogaya and H. Kubota, “Position estimating method of IPMSM at low speed region using dq-axis current derivative without high frequency component,” IEEE PEDS-2013, pp. 1306-1311, Apr. 2013.
    [45] M. S. Fadali and A. Visioli, Digital Control System Analysis and Design Second Edition, Academic Press, USA, 2013.
    [46] S. Vazquez, J. I. Leon, L. G. Franquelo, J. Rodríguez, H. A. Young, A. Marquez, and P. Zanchetta, “Model predictive control a review of its applications in power electronics,” IEEE Industrial Electronics Magazine, vol. 8, Iss. 1, pp. 16-31, Mar. 2014.
    [47] P. Cortés, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J Rodríguez, “Predictive control in power electronics and drives,” IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4312-4324, Dec. 2008.
    [48] L. P. Wang, Model Predictive Control System Design and Implementation Using MATLAB, Springer, London, 2009.
    [49] Mitsubishi Electric, PS21765 Dual-In-Line Package Intelligent Power Module, Aug. 2007.
    [50] B. Baker, “How delta-sigma ADC work, Part 1,” Texas Instruments Incorporated - Analog Applications Journal, pp. 13-16, 2011.
    [51] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters, John Wiley & Sons, New York, 1996.
    [52] Texas Instruments, TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual, 2015.
    [53] F. GOLNARAGHI and B. C. KUO Automatic Control Systems, WILEY, USA, 2010.

    無法下載圖示 全文公開日期 2024/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE