簡易檢索 / 詳目顯示

研究生: 周德昱
Te-Yu Chou
論文名稱: 微型永磁同步電動機驅控系統性能的改善及應用
Performance Improvement and Application of Micro-Permanent Magnet Synchronous Motor Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 許源浴
none
廖聰明
none
林法正
none
徐國鎧
none
王醴
none
李永勳
none
羅有綱
none
邱煌仁
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 152
中文關鍵詞: 微型永磁同步電動機狀態估測器適應性逆控制最佳控制數位訊號處理器
外文關鍵詞: micro permanent magnet synchronous motor, state estimator, adaptive inverse control, optimal control, digital signal processor.
相關次數: 點閱:258下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討微型永磁同步電動機驅動系統的性能改善及應用。文中,首先提出一個新型狀態估測器,估測轉軸角度及速度。經由使用本文所提出的狀態估測器,可以獲得比使用微型編碼器具有更寬廣的控速範圍及更精確的定位性能。
    在控制器設計方面,本文提出適應性逆控制及最佳控制的設計及實現,並應用於微型永磁同步電動機驅動系統,以改善其暫態響應、加載能力及追蹤能力。
    本文的驅動系統使用德州儀器公司的TMS320F28335數位訊號處理器作為核心,達成狀態估測器、控制器及座標轉換等運算。故硬體電路相當簡單,實驗結果說明本文所提的方法,可以有效地提升微型永磁同步電動機驅動系統的性能。最後,以研製的系統,完成多軸定位平台的控制,說明本文在實際應用的可行性及正確性。


    This dissertation investigates the performance improving methods and the pratical applications of micro permanent magnet synchronous motors. In this dissertation, first, a novel state estimator is proposed to obtain the estimated rotor position or rotor speed of the micro motor. By using this proposed state estimator, a wider range of adjustable speed control system and a more precise position control system can be achieved when compared with using the micro encoder, which is attached to the micro motor.
    In addition, an adaptive inverse control and an optimal control are designed and implemented for the micro permanent magnet synchronous motor. The proposed control methods can improve the transient reponse, load disturbance capability, and tracking ability of the closed-loop micro permanent magnet synchronous motor systems.
    A digital signal processor, TMS320F28335, which is made by Texas Instrument Company, is used as the control center to excute the state estimator, control algorithoms, and coordinate transformation. As a result, the hardware is simple. Experimental results show that the proposed methods can effectively improve the performance of the micro permanent magnet synchronous motor drive systems. Finally, a multi-dimentional position table is controlled by using the implemented system. The experimental results show the feasibility of using the proposed micro permanent magnet synchronous motor drive system in a practical application.

    誌謝 I 中文摘要 I 英文摘要 II 目錄 III 圖目錄 VII 表目錄 XIII 符號索引 XIV 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 3 1.3目的及貢獻 8 1.4大綱 11 第二章 微型永磁同步電動機 12 2.1簡介 12 2.2結構及特性 13 2.3數學模式 14 2.4轉矩控制 19 第三章 轉軸角度估測方法 23 3.1本文所探討的系統說明 23 3.2簡介 26 3.3含編碼器時控速系統的狀態估測器設計(方法一) 29 3.3.1基本原理 29 3.3.2狀態估測器設計 30 3.3.3估測器參數設計 33 3.4捨棄編碼器時控速系統的狀態估測器設計(方法二) 35 3.4.1基本原理 35 3.4.2狀態估測器設計 40 3.4.3補償方法 42 3.4.4啟動策略 45 3.5含編碼器時定位系統的狀態估測器設計(方法三) 46 3.5.1基本原理 46 3.5.2狀態估測器設計 46 3.5.3估測器參數設計 49 第四章 控制器設計 51 4.1簡介 51 4.2適應性控制器設計 52 4.2.1簡介 52 4.2.2基本原理 53 4.2.3最小平方適應性演算法 55 4.2.4適應性逆控制閉迴路暫態分析 59 4.2.5適應性逆控制閉迴路穩態分析 64 4.3最佳控制器設計 66 4.3.1簡介 66 4.3.2基本原理 67 4.3.3速度最佳控制器設計 69 4.3.4位置最佳控制器設計 72 第五章 系統研製 75 5.1簡介 75 5.2硬體電路 78 5.2.1數位訊號處理器 78 5.2.2驅動級電路 80 5.2.3電流感測器電路 82 5.2.4微型減速齒輪 84 5.3軟體程式設計 84 5.3.1系統一的程式設計 86 5.3.2系統二的程式設計 88 5.3.3系統三的程式設計 91 第六章 實測 93 6.1簡介 93 6.2實測結果 97 第七章 結論與建議 134 參考文獻 135 作者簡介 151

    [1] C. Livermore, A. R. Forte, T. Lyszczarz, S. D. Umans, A. A. Ayon, and J. H. Lang, “A high-power MEMS electric induction motor,” IEEE Transactions on Microelectromechanucal Systems, vol. 13, no. 3, pp. 465-471, 2004.
    [2] A. A. Yasseen, C. H. Wu, C. A. Zorman and M. Mehregany, “Fabrication and testing of surface micromachined polycrystalline SiC micromotors,” IEEE Transactions on Electron Device Letters, vol. 21, no. 4, pp. 164-166, 2000.
    [3] P. L. Chapman and P. T. Krein, “Smaller is better? [micromotors and electric drives],” IEEE Transactions on Industry Applications Magazine, vol. 9, no. 1, pp. 62-67, 2003.
    [4] N. Ghalichechian, A. Modafe, M. I. Beyaz, and R. Ghodssi, “Design, fabrication, and characterization of a rotary micromotor supported on microball bearings,” IEEE Transactions on Microelectromechanical Systems, vol. 17, no. 3, pp. 632-642, 2008.
    [5] M. Al-Fandi, M. A. K. Jaradat, K. Fandi, J. P. Beech, J. O. Tegenfeldt, and T. C. Yih, “Nano engineered living bacterial motors for active micro-fluidic mixing,” IET Proceedings Nanobiotechnology, vol. 4, no. 3, pp. 61-71, 2010.
    [6] V. R. C. Kobe, and M. C. Cavusoglu, “Design and characterization of a novel hybrid actuator using shape memory alloy and dc micromotor for minimally invasive surgery applications,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 4, pp. 455-464, 2007.

    [7] P. Dario, M. C. Carrozza, C. Stefanini, and S. D’Attanasio, “A mobile microrobot actuated by a new electromagnetic wobble micromotor,” IEEE Transactions on Mechatronics, vol. 3, no. 1, pp. 9-16, 1998.
    [8] K. Suzumori, T. Miyagawa, M. Kimura, and Y. Hasegawa, “Micro inspection robot for 1-in pipes,” IEEE/ASME Transactions on Mechatronics, vol. 4, no. 3, pp. 286-292, 1999.
    [9] E. Sarajlic, C. Yamahata, M. Cordero, and H. Fujita, “Three phase electrostatic rotary stepper micromotor with a flexural pivot bearing,” IEEE Transactions on Microelectromechanical Systems, vol. 19, no. 2, pp. 338-349, 2010.
    [10] M. Sendoh, K. Ishiyama and K. I. Arai, “Fabrication of magnetic actuator for use in a capsule endoscope,” IEEE Transactions on Magnetics, vol. 39, no. 5, pp. 3232-3234, 2003.
    [11] S. Dong, S. P. Lim, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino, “Piezoelectric ultrasonic micromotor with 1.5 mm diameter,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, no. 4, pp. 361-367, 2003.
    [12] C. H. Yun, B. Watson, J. Friend, and L. Yeo, “A piezoelectric ultrasonic linear micromotor using a slotted stator,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 8, pp. 1868-1874, 2010.
    [13] J. Tong, T. Gui, P. Shao, and L. Wang, “Piezoelectric micromotor based on the structure of serial bending arms,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, no. 9, pp. 1100-1104, 2003.

    [14] T. C. Neugebauer, D. J. Perreault, J. H. Lang, and C. Livermore, “A six-phase multilevel inverter for MEMS electrostatic induction micromotors,” IEEE Transactions on Circuits and Systems, vol. 51, no. 2, pp. 49-56, 2004.
    [15] S. F. Nagle, C. Livermore , L. G. Frechette, R.Ghodssi and J. H. Lang, “An electric induction micromotor,” IEEE Transactions on Microelectromechanical Systems, vol. 14, no. 5, pp. 1127-1143, 2005.
    [16] H. Lu, J. Zhu, and Y. Guo, “Development of a slotless tubular linear interior permanent magnet micromotor for robotic applications,” IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 3988-3990, 2005.
    [17] M. Feldmann, and S. Buttgenbach, “Linear variable reluctance (VR) micro motors with compensated attraction force: concept, simulation, fabrication and test,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2567-2569, 2007.
    [18] H. C. Chau, B. Chao, X. P. Li, and T. S. Low, “Investigation of core loss in PM micro-motor made using MIM technology,” IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 3652-3654, 2000.
    [19] K. Komori and T. Yamane, “Magnetically levitated micro PM motors by two types of active magnetic bearings,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 1, pp. 43-49, 2001.
    [20] K. Hameyer and R. Belmans, “Design of very small electromagnetic and electrostatic micro motors,” IEEE Transactions on Energy Conversion, vol. 14, no. 4, pp. 1241-1246, 1999.
    [21] K. Peng, B. M. Chen, G. Cheng, and T. H. Lee, “Modeling and compensation of nonlinearities and friction in a micro hard disk drive servo system with nonlinear feedback control,” IEEE Transactions on Control Systems Technology, vol. 13, no. 5, pp. 708-721, 2005.
    [22] J. Zhang and M. Schroff, “High-performance micromotor control systems,” IEEE IECON-2003, pp. 347-352, Nov. 2003.
    [23] J. Zhang and Q. Jiang, “Sensorless commutation of micro PMSMs for high-performance high-speed applications,” IEEE ICEMS-2005, pp. 1795-1800, 2006.
    [24] Y. H. Chang, T. H. Liu, and C. C. Wu, “Novel adjustable micropermanent-magnet synchronous-motor control system without using a rotor-position/speed sensor,” IEE Proceedings Electric Power Applications, vol. 153, no. 3, pp. 429-438, 2006.
    [25] Y. H. Chang, T. H. Liu, and C. C. Wu, “Design and implementation of an H1 controller for a micropermanent-magnet synchronous motor position control system,” IET Proceedings Electric Power Applications, vol. 2, no. 1, pp. 8-18, 2008.
    [26] M. Morimoto, K. Aiba, T. Sakurai, A. Hoshino, and M. Fujiwara, “Position sensorless starting of super high-speed PM generator for micro gas turbine,” IEEE Transactions on Industrial Electronics , vol. 53, no. 2, pp. 415-420, 2006.
    [27] V. Fernandez, G. Reyne, O. Cugat, P. A. Gilles, and J. Delamare, “Design and modelling of permanent magnet micro-bearings,” IEEE Transactions on Magnetics, vol. 34, no. 5, pp. 3596-3599, 1998.
    [28] P. A. Gilles, J. Delamare, O. Cugat, and J. L. Schanen, “Design of a permanent magnet planar synchronous micromotor,” IEEE IAS-2000, pp. 223-227, Oct. 2000.
    [29] B. Wagner, M. Kreutzer, and W. Benecke, “Permanent magnet micromotors on silicon substrates,” Journal of Microelectromechanical Systems, vol. 2, no. 3, pp. 23-29, 1993.

    [30] T. Y. Chou, T. H. Liu, and T. T. Cheng, “Design and implementation of an adaptive inverse controller for a micro-permanent magnet synchronous motor control system,” IET Proceedings-Electric Power Applications, vol. 3, no. 5, pp. 471-481, 2009.
    [31] R. J. Wai, and M. C. Lee, “Intelligent optimal control of single link flexible robot arm,” IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 201-220, 2004.
    [32] L. Zhao, C. H. Ham, Q. Han, T. X. Wu, L. Zheng, K. B. Sundaram, J. Kapat, and L. Chow, “Design of optimal digital controller for stable super high speed permanent magnet synchronous motor,” IET Proceedings Electric Power Applications, vol. 153, no. 2, pp. 213-218, 2006.
    [33] R. L. Shi, T. H. Liu, and Y. C. Chang, “Position control of an interior permanent magnet synchronous motor without using a shaft position sensor,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1989-2000, 2007.
    [34] S. Li, and Z. Liu, “Adaptive speed control for permanent magnet synchronous motor system with variations of Load inertia,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp.3050-3059, 2009.
    [35] H. Z. Jin, and J. M. Lee, “An RMRAC current regulator for permanent magnet synchronous motor based on statistical model interpretation,” IEEE Transactions on Industrial Electronics, vol. 56, no. 1, pp. 169-177, 2009.

    [36] Y. A. R. I. Mohamed, and E. F. E. Saadany, “A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems,” IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 92-100, 2008.
    [37] H. H. Choi, N. T. T. Vu, and J. W. Jung, “Digital implementation of an adaptive speed regulator for a PMSM,” IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 3-8, 2011.
    [38] L. Liu, and D. A. Cartes, “Synchronisation based adaptive parameter identification for permanent magnet synchronous motors,” IET Proceedings Control Theory Applications, vol. 1, no. 4, pp. 1015-1022, 2007.
    [39] Y. A. R. I. Mohamed, “Adaptive self tuning speed control for permanent magnet synchronous motor drive with dead time,” IEEE Transactions on Energy Conversion, vol. 21, no. 4, pp. 855-862, 2006.
    [40] X. L. Shi, F. Morel, A. M. Llor, B. Allard, and J. M. Retif, “Implementation of hybrid control for motor drives,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1946-1952, 2007.
    [41] J. Weigold, and M. Braun, “Predictive current control using identification of current ripple,” IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4346-4353, 2008.
    [42] J. W. Jung, Y. S. Choi, V. Q. Leu, and H. H. Choi, “Fuzzy PI-type current controllers for permanent magnet synchronous motors,” IET Proceedings Electric Power Applications, vol. 5, no. 1, pp. 143-152, 2011.

    [43] J. W. Jung, T. H. Kim, and H. H. Chio, “Speed control of a permanent magnet synchronous motor with a torque observer: a fuzzy apprroach,” IET Proceedings Control Theory Applications, vol. 4, no. 12, pp. 2971-2981, 2010.
    [44] A. V. Sant, and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4672-4675, 2009.
    [45] T. D. Batzel, and K.Y. Lee, “An approach to sensorless operation of the permanent magnet synchronous motor using diagonally recurrent neural networks,” IEEE Transactions on Energy Conversion, vol. 18, no. 1, pp. 100-106, 2003.
    [46] Y. Yi, D. M. Vilathgamuwa, and M. A. Rahman, “Implementation of an artificial neural network based real time adaptive controller for an interior permanent magnet motor drive,” IEEE Transactions on Industry Applications, vol. 39, no. 1, pp. 96-103, 2003.
    [47] C. Xia, C. Guo, and T. Shi, “A neural network identifier and fuzzy controller based algorithm for dynamic decoupling control of permanent magnet spherical motor,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2868-2878, 2010.
    [48] Y. S. Han, J. S. Choi, and Y. S. Kim, “Sensorless PMSM drive with a sliding mode control based adaptive speed and stator resistance estimator,” IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 3588-3591, 2000.
    [49] J. Solsona, M. I. Valla, and C. Muravchik “Nonlinear control of a permanent magnet synchronous motor with disturbance torque estimation,” IEEE Transactions on Energy Conversion, vol. 15, no. 2, pp. 163-168, 2000.
    [50] J. H. Kim, J. W. Choi, and S. K. Sul, “Novel rotor flux observer using observer characteristic function in complex vector space for field oriented induction motor drives,” IEEE Transactions on Industrial Applications, vol. 35, no. 5, pp. 1334-1343, 202.
    [51] H. Kim, M. C. Harke, and R. D. Lorenz, “Sensorless control of interior permanent magnet machine drives with zero phase lag position estimation,” IEEE Transactions on Industrial Applications, vol. 39, no. 6, pp. 1726-1733, 2003.
    [52] B. H. Bae, S. K. Sul, J. H. Kwon, and J. S. Byeon, “Implementation of sensorless vector control for super high speed PMSM of turbo compressor,” IEEE Transactions on Industrial Applications, vol. 39, no. 3, pp. 811-818, 2003.
    [53] R. Raute, C. Caruana, C. S. Staines, J.Cilia, M. Sumner, and G. M. Asher “Analysis and compensation of inverter nonlinearity effect on a sensorless PMSM drive at very low and zero speed operation,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 4065-4074, 2010.
    [54] P. D. C. Perera, F. Blaabjerg, J. K. Pedersen, and P. Thogersen, “A sensorless, stable V/f control method for permanent magnet synchronous motor drives,” IEEE Transactions on Industrial Applications, vol. 39, no. 3, pp. 783-791, 2003.
    [55] C. Wang, and L. Xu, “A novel approach for sensorless control of PM machines down to zero speed without signal injection or special PWM technique,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1601-1607, 2004.

    [56] T. S. Kwon, M. H. Shin, and D. S. Hyun, “Speed sensorless stator flux oriented control of induction motor in the field weakening region using luenberger observer,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 864-869, 2005.
    [57] C. Silva, G. M. Asher, and M. Sumner, “Hybrid rotor position observer for wide speed range sensorless PM motor drives including zero speed,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 373-378, 2006.
    [58] J. K. Seok, J. K. Lee, and D. C. Lee, “Sensorless speed control of nonsalient permanent magnet synchronous motor using rotor position tracking PI controller,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 399-405, 2006.
    [59] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 363-372, 2006.
    [60] K. B. Lee, and F. Blaabjerg, “Reduced order extended luenberger observer based sensorless vector control driven by matrix converter with nonlinearity compensation,” IEEE Transactions on Industrial Electronics, vol. 53, no. 1, pp. 66-75, 2006.
    [61] H. P. Wang, and Y. T. Liu, “Integrated design of speed sensorless and adaptive speed controller for a brushless DC motor,” IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 518-523, 2006.
    [62] K. Y. Lian, C. H. Chiang, and H. W. Tu, “LMI based sensorless control of permanent magnet synchronous motors,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2769-2778, 2007.

    [63] Y. Yan, J. G. Zhu, and Y. G. Guo, “Initial rotor position estimation and sensorless direct torque control of surface mounted permanent magnet sunchronous motors considering saturation saliency,” IET Proceedings Electric Power Applications, vol. 2, no. 1, pp. 42-48, 2008.
    [64] I. H. Al-Bahadly, “Examination of a sensorless rotor position measurement method for switched reluctance drive,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 288-295, 2008.
    [65] A. Piippo, J. Salomaki, and J. Luomi, “Signal injection in sensorless PMSM drives equipped with inverter output filter,” IEEE Transactions on Industrial Applications, vol. 44, no. 5, pp. 1614-1620, 2008.
    [66] S. Chi, Z. Zhang, and L. Xu, “Sliding mode sensorless control of direct drive PM synchronous motors for washing machine applications,” IEEE Transactions on Industrial Applications, vol. 45, no. 2, pp. 582-590, 2009.
    [67] S. M. Gadoue, D. Giaouris, and J. W. Finch, “Sensorless control of induction motor drives at very low and zero speeds using neural network flux observers,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3029-3039, 2009.
    [68] A. Piippo, M. Hinkkanen, and J. Luomi, “Adaptation of motor parameters in sensorless PMSM drives,” IEEE Transactions on Industrial Applications, vol. 45, no. 1, pp. 203-212, 2009.
    [69] J. L. Chen, T. H. Liu, and C. L. Chen, “Design and implementation of a novel high performance sensorless control system for interior permanent magnet synchronous motors,” IET Proceedings Electric Power Applications, vol. 4, no. 4, pp. 226-240, 2010.

    [70] F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, “Back EMF sensorless control algorithm for high dynamic performance PMSM,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2092-2100, 2010.
    [71] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier signal selection for sensorless control of PM synchronous machines at zero and very low speed,” IEEE Transactions on Industrial Applications, vol. 46, no. 1, pp. 167-178, 2010.
    [72] Y. Wu, Z. Deng, X. Wang, X. Ling, and X. Cao, “Position sensorless control based on coordinate transformation for brushless DC motor drives,” IEEE Transactions on Power Electronics, vol. 25, no. 9, pp. 2365-2371, 2010.
    [73] K. B. Lee, and F. Blaabjerg, “Robust and stable disturbance observer of servo system for low speed operation,” IEEE Transactions on Industrial Applications, vol. 43, no. 3, pp. 627-635, 2007.
    [74] L. Kovudhikulrungsri, and T. Koseki, “Precise speed estimation from a low resolution encoder by dual sampling rate observer,” IEEE/ASME Transactions on Mechatronics, vol. 11, no. 6, pp. 661-670, 2006.
    [75] S. M. Yang, and S. J. Ke, “Performance evaluation of a velocity observer for accurate velocity estimation of servo motor drives,” IEEE Transactions on Industrial Applications, vol. 36, no. 1, pp. 98-104, 2000.
    [76] R. C. Kavanagh, “Improved digital tachometer with reduced sensitivity to sensor nonideality,” IEEE Transactions on Industrial Electronics, vol. 47, no. 4, pp. 890-897, 2000.
    [77] S. H. Lee, and S. A. Velinsky, “Improved velocity estimation for low speed and transient regimes using low resolution encoders,” IEEE Transactions on Mechatronics, vol. 9, no. 3, pp. 553-560, 2004.
    [78] A. Bunte, and S. Beineke, “High performance speed measurement by suppression of systematic resolver and encoder errors,” IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 49-53, 2004.
    [79] P. B. Beccue, and S. D. Pekarek, “A coupled piezoelectric/single hall sensor position observer for permanent magnet synchronous machines,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2389-2397, 2007.
    [80] A. Lidozzi, L. Solero, F. Crescimbini, and A. D. Napoli, “SVM PMSM drive with low resolution hall effect sensors,” IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 282-290, 2007.
    [81] S. Sarma, V. K. Agrawal, and S. Udupa, “Software based resolver to digital conversion using a DSP,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 371-379, 2008.
    [82] Z. Feng, and P. P. Acarnley, “Extrapolation technique for improving the effective resolution of position encoders in permanent magnet motor drives,” IEEE/ASME Transactions on Mechatronics, vol. 13, no. 4, pp. 410-415, 2008.
    [83] A. Yoo, S. K. Sul, D. C. Lee, and C. S. Jun, “Novel speed and rotor position estimation strategy using a dual observer for low resolution position sensors,” IEEE Transactions on Industrial Electronics, vol. 24, no. 12, pp. 2897-2906, 2009.
    [84] N. K. Boggarpu, and R. C. Kavanagh, “New learning algorithm for high quality velovity measurement and control when using low cost optical encoders,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 3, pp. 565-574, 2010.

    [85] S. H. Lee, and J. B. Song, “Acceleration estimator for low velocity and low acceleration regions based on encoder position data,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 1, pp. 58-64, 2001.
    [86] F. J. Lin, P. H. Chou, and Y. S. Kung, “Robust fuzzy neural network controller with nonlinear disturbance observer for two axis motion control system,” IET Proceedings Control Theory and Applications, vol. 2, no. 2, pp. 151-167, 208.
    [87] F. J. Lin, P. H. Shieh, and P. H. Shen, “Robust recurrent neural network sliding mode control for the X-Y table of a CNC machine,” IEE Proceedings Control Theory Applications, vol. 153, no. 1, pp. 111-123, 2006.
    [88] F. L. Lin, R. J. Wai, and P. K. Huang, “Two axis motion control system using wavelet neural network for ultrasonic motor drives,” IEE Proceedings Electric Power Applications, vol. 151, no. 5, pp. 613-621, 2004.
    [89] P. H. Shen, and F. L. Lin, “Intelligent backstepping sliding mode control using RBFN for two axis motion control system,” IEE Proceedings Electric Power Applications, vol. 152, no. 5, pp. 1321-1342, 2005.
    [90] Z. Z. Liu, F. L. Luo, and M. H. Rashid, “Robust high speed and high precision linear motor direct drive XY-table motion system,” IEE Proceedings Control Theory Applications, vol. 151, no. 2, pp. 166-173, 2004.
    [91] J. O. Jang, “Deadzone compensation of an XY positioning table using fuzzy logic,” IEEE Transactions on Industrial Electronics, vol. 52, no. 6, pp. 1696-1701, 2005.

    [92] G. Cheng, K. Peng, B. M. Chen, and T. H. Lee, “Improving transient performance in tracking general references using composite nonlinear feedback control and its application to high speed XY table positioning mechanism,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 1039-1051, 2007.
    [93] C. J. Kempf, and S. Kobayashi, “Disturbance observer and feedforward design for a high speed direct drive positioning table,” IEEE Transactions on Control System Technology, vol. 7, no. 5, pp. 513-526, 1999.
    [94] W. Li, and Y. Hori, “Vibration suppression using single neural based PI fuzzy controller and friction order disturbance observer,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 117-126, 2007.
    [95] M. Bertoluzzo, G. S. Buja, and E. Stampacchia, “Performance analysis of a high bandwidth torque disturbance compensator,” IEEE Transactions on Industrial Electronics, vol. 9, no. 4, pp. 653-660, 2004.
    [96] H. Kobayashi, S. Katsura, and K. Ohnishi, “An analysis of parameter variations of disturbance observer for motion control,” IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 3413-3421, 2007.
    [97] R. H. Krondorfer, and Y. K. Kim, “Packaging effect on MEMS pressure sensor performance,” IEEE Transactions on Components and Packaging Technologies, vol. 30, no. 2, pp. 285-293, 2007.
    [98] M. T. Akhtar, M. Abe, and M. Kawamata, “Adaptive filtering with averaging based algorithm for feedforward active noise control systems,” IEEE Transactions on Signal Processing Leter, vol. 11, no. 6, pp. 557-560, 2004.

    [99] Maxon motor catalog, Maxon 2006/07, Apr. 2006, http://www.max-
    onmotor.com/.

    [100] Y. X. Yao, and A. V. Radun, “Proportional integral observer design for linear systems with time delay,” IET Proceedings Control Theory Applications, vol. 1, no. 4, pp. 887-892, 2007.
    [101] Z. Gao, and D. W. C. Ho, “Proportional multiple integral observer design foe descriptor systems with measurement output disturbances,” IEE Proceedings Control Theory Applications, vol. 151, no. 3, pp. 279-288, 2004.
    [102] A. G. Wu, and G. R. Duan, “Design of PI observers for continuous time descriptor linear systems,” IEEE Transactions on Systems, Man, and Cyberntics-Part B: Cybernetics, vol. 36, no. 6, pp. 1423-1431, 2006.
    [103] Spectrum Digital, eZdspTM F28335 Technical Reference, 2007, http://www.spectrumdigital.com/.
    [104] Widrow, B., and Walach, E., Adaptive inverse control a signal processing approach, IEEE Press, 2008.
    [105] M. H. Costa, J. C. M. Bernudez, and N. J. Bershad, “Stachastic analysis of the filtered X LMS algorithm in systems with nonlinear secondary paths,” IEEE Transactions on Signal Processing, vol. 50, no. 6, pp. 1327-1342, 2002.
    [106] A. M. Karshenas, M. W. Dunnigan, and B. W. Williams, “Adaptive inverse control algorithm for shock testing,” IEE Proceedings Control Theory Applications, vol. 147, no. 3, pp. 267-276, 2000.
    [107] H. Li, C. Du, and Y. Wang, “Optimal reset control for a dual stage actuator system in HDDs,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 3, pp. 480-488, 2011.

    [108] L. Umanand, and S. R. Bhat, “Optimal and robust digital current controller aynthesis for vector controlled induction motor drive,” IEE Proceedings Electric Power Applications, vol. 143, no. 2, pp. 141-150, 1996.
    [109] M. Parmar, and J. Y. Hung, “A sensorless optimal control system for an automotive electric power assist steering system,” IEEE Transactions on Industrial Electronics, vol. 51, no. 2, pp. 290-298, 2004.
    [110] Qiu L. and Zhou K., Introduction to feed-back control, Pearson Education International, New Jersey, 2010.
    [111] Franklin G. F., Powell J. D., and Workman M., Digital control of dynamic systems, Addison-Wesley, 1997.

    QR CODE