簡易檢索 / 詳目顯示

研究生: 李季憲
Ji-shian Li
論文名稱: 以數位信號處理器為基礎之切換式整流器研製
Development of Digital Signal Processor Based Switched Mode Rectifiers
指導教授: 葉勝年
Sheng-Nian Yeh
口試委員: 賴炎生
none
王文智
Wen-Jieh Wang
呂文隆
none
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 86
中文關鍵詞: 數位信號處理器切換式整流器
外文關鍵詞: switched mode rectifiers, digital signal processor
相關次數: 點閱:180下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本文旨在研製以數位信號處理器為基礎之切換式整流器,作為通訊與工業設備之供應電源。交流-直流功率轉換方面,採用二臂並聯型單相功因校正器並搭配交錯式脈波寬度調變,完成均流且分時之控制以減少電源電流漣波,且以電流預測控制策略提高系統功率因數,達到單位功因之目標。直流-直流功率轉換方面,採用全橋式直流-直流功率轉換器並藉相移式控制,達到零電壓切換以降低開關切換損失;而其輸出側為倍流整流架構可減少電感導通損失,進而提高系統效率。系統整合方面,於單相功因校正器中加入負載功率補償控制,以提高整體響應並降低輸入電流諧波。
    本文建立開關等效電路進行電路分析及控制理論推導,並以Matlab/Simulink軟體從事電路模擬。文中之系統採用數位信號處理器TMS320F2812作為控制核心,電壓及電流閉迴路控制以軟體完成,減少硬體電路並提高可靠度。另者,本系統以控制器區域網路為通信介面,將數位信號處理器之串列通訊資料傳送至個人電腦端,完成系統即時監視之功能。
    本文已完成500W之實體製作,輸入之電源電壓為交流110V/60Hz,直流鏈電壓為380V,輸出電壓為48V。滿載整體效率達89%,功率因數為0.993,電源電流之總諧波失真率為4%,符合IEEE Std 519-1992之規範。


    ABSTRACT
    This thesis presents the design and implementation of a digital signal processor based switched mode rectifiers for telecommunication power systems. A two-leg parallel-connected circuit with single-phase power factor correction is proposed for ac-dc power conversion. Equal and time-sharing current control is achieved through interleaved pulse-width-modulation to reduce input current ripple. In addition, current-predicted control is used to raise the power factor to unity. On the other hand, dc-dc power conversion is designed with full-bridge power circuit. The zero-voltage switching is accomplished by phase-shifted control to reduce switching loss. The current doubler rectifiers installed at output side can reduce conducting loss of output filtering inductors. Finally, the introduction of load power compensating control in power factor correction circuit will improve system performance and reduce the input current harmonics.
    In this thesis, switch equivalent circuit is first derived and then simulated by Matlab/Simulink to verify the proposed control strategy. The 32-bit digital signal processor, TMS320F2812, is used to implement the control functions of the system. The control functions of voltage and current closed-loop controls are realized by software to reduce circuit components and improve reliability. In addition, the digital signal processor communicates with personal computer by controller area network interface for real-time monitoring.
    An experimental system of 48V, 500W output power for 110V, 60Hz input is built with the dc-link voltage of 380V. The efficiency is 89% in full-load operations, and the power factor is 0.993. The total harmonic distortion of input current is 4%, which complies with IEEE Std 519-1992.

    目錄 中文摘要I 英文摘要II 誌  謝III 目  錄IV 符號說明VI 圖表索引X 第一章 緒論1   1.1 研究動機與目的1   1.2 文獻探討1   1.3 系統架構與本文特色3   1.4 本文大綱5 第二章 二臂並聯型單相功因校正器之分析與控制6   2.1 前言.6   2.2 二臂並聯型單相功因校正器之分析8   2.3 二臂並聯型單相功因校正器之控制11     2.3.1 電壓與電流閉迴路控制12     2.3.2 交錯式脈波寬度調變控制14   2.4 二臂並聯型單相功因校正器之模擬16   2.5 結語23 第三章 全橋式直流-直流功率轉換器之分析與控制及系統整合24   3.1 前言24   3.2 全橋式直流-直流功率轉換器之分析26   3.3 全橋式直流-直流功率轉換器之控制29     3.3.1 電壓與電流閉迴路控制29     3.3.2 相移式控制31   3.4 全橋式直流-直流功率轉換器之模擬33   3.5 系統整合37   3.6 結語38 第四章 實體製作與實測39   4.1 前言39   4.2 數位信號處理器介面電路39   4.3 通信介面電路41   4.4 二臂並聯型單相功因校正器硬體電路43     4.4.1 零交越點偵測電路43     4.4.2 閘極驅動電路45     4.4.3 電壓回授電路45     4.4.4 電流回授電路46   4.5 全橋式直流-直流功率轉換器硬體電路48     4.5.1 閘極驅動電路48     4.5.2 電壓回授電路49     4.5.3 電流回授電路49   4.6 軟體規劃51     4.6.1 主程式流程規劃51     4.6.2 二臂並聯型單相功因校正器程式規劃52     4.6.3 全橋式直流-直流功率轉換器程式規劃56     4.6.4 控制器區域網路通信程式規劃57   4.7 實測結果58   4.8 結語78 第五章 結論與建議79   5.1 結論79   5.2 建議80 參考文獻81 附  錄85 作者簡介86

    參考文獻
    [1]Y. F Liu, “Requirements and Technologies in Telecom Power Systems,” Proceedings of The Third International Power Electronics and Motion Control Conference, vol. 3, pp. 1478-1482, 2000.
    [2]D. Divan, “Low Stress Switching for Efficiency,” IEEE Spectrum, vol. 33, pp. 33-39, 1996.
    [3]G. Hua and F. C. Lee, “Soft-Switching Techniques in PWM Converters,” IEEE Transactions on Industrial Electronics, vol. 42, pp. 595-603, 1995.
    [4]Y. Song and P. N. Enjeti, “A New Soft Switching Technique for Bi-Directional Power Flow, Full-bridge DC-DC Converter,” Conference Record of the Industry Applications Conference, 37th IAS Annual Meeting, vol. 4, pp. 2314-2319, 2002.
    [5]A. R. Prasad, P. D. Ziogas and S. Manias, “A Comparative Evaluation of SMR Converters With and Without Active Input Current Waveshaping,” IEEE Transactions on Industrial Electronics, vol. 35, pp. 461-468, 1988.
    [6]M. Dawande and G. K. Dubey, “Switching Techniques for Switch Mode Rectifier,” Proceedings of the IEEE International Conference on Power Electronics and Drive Systems, vol. 1, pp. 167-173, 1999.
    [7]T. W. Heo, Y. D. Son and E. Santi, “Analysis of the Interleaved Type Power Factor Correction (PFC) Converter in Discontinuous Current Mode,” Proceedings of 30th Annual Conference of IEEE Industrial Electronics Society, vol. 3, pp. 2706-2711, 2004.
    [8]S. Choudhury and J. P. Noon, “A DSP Based Digitally Controlled Interleaved PFC Converter,” Proceedings of 20th Annual IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 648-654, 2005.
    [9]S. Kim and P. N. Enjeti, “Control of Multiple Single-Phase PFC Modules with a Single Low-Cost DSP,” IEEE Transactions on Industry Applications, vol. 39, pp. 1379-1385, 2003.
    [10]H. J. Chiu, L. W. Lin, Y. C. Su and S. C. Mou, “A Phase-Shifted Zero Voltage Transition Full-Bridge Converter With Current Doubler Synchronous Rectification,” Proceedings of SICE 2004 Annual Conference, vol. 1, pp. 60-65, 2004.
    [11]J. M. Burdio, F. Canales, P. M. Barbosa and F. C. Lee, “Comparison Study of Fixed-Frequency Control Strategies for ZVS DC/DC Series Resonant Converters,” Proceedings of IEEE 32nd Annual Power Electronics Specialists Conference, vol. 1, pp. 427-432, 2001.
    [12]N. H. Kutkut, “A Full Bridge Soft Switched Telecom Power Supply With a Current Doubler Rectifier,” Proceedings of 19th Telecommunications Energy Conference, pp. 344-351, 1997.
    [13]B. R. Lin and S. J. Huang, “Analysis and Implementation of a ZVS Full-Bridge Converter With Current Doubler Rectifier,” Proceedings of IEEE Region 10 Conference TENCON, vol. 4, pp. 155-158, 2004.
    [14]N. H. Kutkut, D. M. Divan and R. W. Gascoigne, “An Improved Full-Bridge Zero-Voltage Switching PWM Converter Using a Two-Inductor Rectifier,” IEEE Transactions on Industry Applications, vol. 31, pp. 119-126, 1995.
    [15]B. R. Lin, K. Huang and D. Wang, “Analysis and Implementation of Full-Bridge Converter With Current Doubler Rectifier,” IEE Proceedings of Electric Power Applications, vol. 152, pp. 1193-1202, 2005.
    [16]G. C. Hsieh, J. C. Li, M. H. Liaw, J. P. Wang and T. F. Hung, “A Study on Full-Bridge Zero-Voltage-Switched PWM Converter: Design and Experimentation,” Proceedings of the Industrial Electronics, Control and Instrumentation International Conference, vol. 2, pp. 1281-1285, 1993.
    [17]P. Alou, J. A. Oliver, O. Garcia, R. Prieto and J. A. Cobos, “Comparison of Current Doubler Rectifier and Center Tapped Rectifier for Low Voltage Applications,” Proceedings of 21st Annual IEEE Applied Power Electronics Conference and Exposition, pp. 744-750, 2006.
    [18]Y. K. Lo, S. Y. Ou and H. J. Chiu, “On Evaluating the Current Distortion of the Single-Phase Switch-Mode Rectifiers With Current Slope Maps,” IEEE Transactions on Industrial Electronics, vol. 49, pp. 1128-1137, 2002.
    [19]D. Tollik and A. Pietkiewicz, “Comparative Analysis of 1-Phase Active Power Factor Correction Topologies,” Proceedings of 14th International Telecommunications Energy Conference, pp. 517-523, 1992.
    [20]T. A. Kneschke, “Distortion and Power Factor of Nonlinear Loads,” Proceedings of IEEE Power Engineering Society Summer Meeting, vol. 1, pp. 457-462, 1999.
    [21]L. Cividino, “Power Factor, Harmonic Distortion; Causes, Effects and Considerations,” Proceedings of 14th International Telecommunication Energy Conference, pp. 506-513, 1992.
    [22]H. Y. Kanaan, A. Marquis and K AI-Haddad, “Small-Signal Modeling and Linear Control of a Dual Boost Power Factor Correction Circuit,” Proceedings of IEEE 35th Annual Power Electronics Specialists Conference, vol. 4, pp. 3127-3133, 2004.
    [23]F. A. Huliehel, F. C. Lee and B. H. Cho, “Small-Signal Modeling of the Single-Phase Boost High Power Factor Converter With Constant Frequency Control,” Proceedings of 23rd Annual IEEE Power Electronics Specialists Conference, vol. 1, pp. 475-482, 1992.
    [24]D. Sharon, “Power Factor Definitions and Power Transfer Quality in Nonsinusoidal Situations,” IEEE Transactions on Instrumentation and Measurement, vol. 45, pp. 728-733, 1996.
    [25]J. Y. Chai and C. M. Liaw, “Current and Voltage Tracking Controls for a DSP-Based SMR,” Proceedings of the IEEE International Symposium on Industrial Electronics, vol. 2, pp. 695-700, 2005.
    [26]Y. S. Jung and M. J. Youn, “Discrete Time Small Signal Modeling of Average Current Mode Control,” Electronics Letters, vol. 36, pp. 1908-1909, 2000.
    [27]W. Zhang, G. Feng, Y. F. Liu and B. Wu, “A Digital Power Factor Correction (PFC) Control Strategy Optimized for DSP,” IEEE Transactions on Power Electronics, vol. 19, pp. 1474-1485, 2004.
    [28]H. Mao, S. Deng, J. A. Aby-Qahouq and I. Batarseh, “A Modified ZVS Half-Bridge DC-DC Converter,” Proceedings of Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, vol. 3, pp. 1436-1441, 2004.
    [29]W. Chen, F. C. Lee, M. M. Jovanovic and J. A. Sabate, “A Comparative Study of a Class of Full Bridge Zero-Voltage-Switched PWM Converters,” Proceedings of Applied Power Electronics Conference and Exposition, vol. 2, pp. 893-899, 1995.
    [30]V. Vlatkovic, J. A. Sabate, R. B. Ridley, F. C. Lee and B. H. Cho, “Small-Signal Analysis of the Phase-Shifted PWM Converter,” IEEE Transactions on Power Electronics, vol. 7, pp. 128-135, 1992.
    [31]X. Xu, “Small-Signal Model for Current Mode Control Full-Bridge Phase-Shifted ZVS Converter,” Proceedings of 23rd Annual IEEE Power Electronics and Motion Control Conference, vol. 1, pp. 514-518, 2000.
    [32]張旭鋒,“植基於數位信號處理器之雙向直流-直流功率轉換器研製”,國立台灣科技大學碩士論文,民國九十五年。
    [33]王國丞,“並聯三相不斷電系統研製”,國立台灣科技大學碩士論文,民國九十五年。
    [34]梁家豪,“控制區域網路通訊協定於並聯型直流-直流功率轉換器之應用”,國立台灣科技大學碩士論文,民國九十六年。
    [35]TMS320x281x System Control and Interrupts Reference Guide, Texas Instruments Co., 2006.
    [36]TMS320x281x Event Manager Reference Guide, Texas Instruments Co., 2006.
    [37]TMS320x281x Analog-to-Digital Converter Reference Guide, Texas Instruments Co., 2005.
    [38]TMS320x281x, 280x Enhanced Controller Area Network Reference Guide, Texas Instruments Co., 2006.
    [39]CAN Specification, Rober Bosch GmbH Co., 1991.
    [40]SN65HVD230 Application Note, Texas Instruments Co., 2006.
    [41]LM339 Application Note, Texas Instruments Co., 2004.
    [42]HCPL2601 Technical Data, Hewlett Packard Co.
    [43]UCC27323 Application Note, Texas Instruments Co., 2002.
    [44]HCPL7840 Technical Data, Hewlett Packard Co.
    [45]LM358 Application Note, Texas Instruments Co., 1998.
    [46]HX25P Application Note, LEM Co.
    [47]IR2110 Application Note, International Rectifier Co.
    [48]TL084 Application Note, Texas Instruments Co., 1995.
    [49]LA100P Application Note, LEM Co.

    QR CODE