簡易檢索 / 詳目顯示

研究生: 廖天佑
TIAN-YOU LIAO
論文名稱: 應用PIII技術於AA7005鋁合金表面特性改進之研究
Applying Plasma Immersion Ion Implantation technique to improve the surface properties of AA7005 Aluminum Alloy
指導教授: 吳翼貽
Ye-Ee Wu
口試委員: 郭俞麟
Yu-Lin Kuo
蔡文發
Wen-Fa Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 59
中文關鍵詞: 電漿離子佈植鋁合金
外文關鍵詞: Plasma Immersion Ion Implantation, aluminum alloy, Nitrogen
相關次數: 點閱:203下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本計畫係探討應用電漿浸沒離子佈植技術(PIII, Plasma Immersion Ion Implantation)於Al-Zn-Mg鋁合金來增進其表面特性之研究。在本研究內以AA7005為基材,探討PIII製程之脈衝電壓、基材初始狀態、及後續析出熱處理製程對表面改質層之生成、厚度及微觀結構等表面特性的影響。
    本實驗前半段,係以不同PIII脈衝電壓值對試片進行表面改質處理,探討不同脈衝電壓對試片表面改質層之影響。應用奈米壓痕試驗機(nano-indentor)與輝光放電光譜分析儀(GDOS, Glow Discharge Optical Spectrometry)來得到硬度縱深曲線圖以及氮(N)離子縱深分佈曲線圖,並應用原子力顯微鏡(AFM, Atomic Force Microscopy)來量測試片之表面粗糙度並進行分析。亦應用ball-on-disc方法進行表面摩擦係數之量測。在後半段,利用SIMS得到試片表面之鋁元素及氮離子縱深分布曲線圖,對GDOS的氮離子縱深分佈曲線圖進行校正,並對PIII處理試片進行後續析出熱處理,探討後續析出熱處理製程對試片表面粗糙度與改質層性質之影響。
    研究結果顯示,在越高的脈衝電壓進行離子佈值時,氮離子能植入的深度越寬,直到離子注入劑量達到一定程度與深度後,便開始在試片外部處堆積,難以再往較深處移動。隨著離子注入劑量上升,對鋁合金試片表面的硬度提升越趨明顯,經離子佈值試片之硬度比未進行離子佈值者提高兩倍以上。將離子佈值過之試片進行T6熱處理後,在試片內部的氮離子會向外擴散,雖然會導致改質層厚度縮減,但也會使鋁與氮的結合集中在外部,使試片得到更好的硬度與較低的摩擦係數。


    The objective is to improve the surface property of the Al-Zn-Mg alloys by applying Nitrogen Plasma Immersion Ion Implantation (N-PIII) technique to modify the surface properties of the aluminum alloy. AA7005 aluminum alloy is used as the substrate material in this study. Effects of bias voltage of N-PIII process on the thickness, growth rate and microstructure of the modified layer was studied. The influences of pre-treatment and initial condition of substrate as well as the post-process heat-treatment on the microstructure and the surface characteristics of the modified layer were investigated and analyzed.
    At the first step, effects of bias voltage, 20 kV, 30kV and 40kV, on the thickness, growth rate and micro-structure of the modified layer were studied. Nano-indentation test and Glow Discharge Spectrometer (GDOS) test were conducted on the treated specimens to obtain the depth evolution profiles of the hardness and the depth profiles of nitrogen ions from the surface of specimen, respectively. Atomic Force Microscopy (AFM) were applied to measure the surface roughness of the treated specimens. The friction coefficient of the modified layer were measured by ball-on-disc method.
    The second step efforts were focused on studying the growth rate and the micro- structure of the modified layer, as well as the effects of post-process heat treatment on the surface properties of the modified layer. The depth profiles of Al and N were measured by Secondary Ion Mass Spectrometer (SIMS) to calibrate the GDOS results. Specimens being N-PIII treated were subjected to various heat treatments. Then, nano-indentation test, GDOS test, ball-on-disc test, and AFM were conducted on these heat-treated specimens to examine the effects of post-process heat treatment on the surface properties of the modified layer.
    Experimental results showed that the depth of nitrogen ion is related with the bias voltage. Until the level depth, the nitrogen ion can’t move into the deeply side of specimen. Specimen’s surface hardness was going up when we promote the ions dosage, and the hardness would increase double after the process of N-PIII. After the heat-treatment of T6, internal nitrogen ion in the specimen would diffuse to the external, and the wide of modified layer would be reduced. This phenomenon can promote the probability to form the aluminum nitride, and to get better surface property.

    誌謝 I 摘要 II ABSTRACT III 目錄 V 圖索引 VII 表索引 IX 第一章 前言 1 1.1研究緣起 1 1.2研究目的 1 1.3研究方法 2 第二章 文獻探討 3 2.1鋁合金簡介與分類 3 2.2 電漿的生成 5 2.3 電漿浸沒離子佈植 6 2.4 離子轟擊效應 8 2.4 鋁合金之析出強化 9 第三章 實驗方法與步驟 14 3.1實驗材料 14 3.2實驗流程 15 3.3試片製作 17 3.3.1 試片前製處理 17 3.3.2電漿浸沒離子佈植(PIII) 17 3.3.3 T6熱處理流程 21 3.4輝光放電分析(GDOS) 22 3.5奈米壓痕量測 23 3.6 表面粗糙度分析 24 3.7 摩擦係數測試 26 第四章 結果與討論 27 4.1 氮離子縱深分佈 27 4.1.1能量效應 28 4.1.2 T6熱處理製程後 31 4.2 表面硬度值 36 4.3 表面粗糙度分析 41 4.4 摩擦係數測試 49 第五章 結論 53 參考文獻 55 作者簡介 59

    [1] P. Vissutipitukul, T. Aizawa, “Wear of plasma-nitrided aluminum alloys,” Wear 259 (2005) 482–489.

    [2] RJ Rodriguez, A Sanz, A Medrano, JA Garcia-Lorente, “Tribological properties of ion implanted Aluminum alloys,” Vacuum 52(1999) 187-192.

    [3] L. Guzman, G. Bonini, M. Adami, P.M. Ossi, A. Miotello, M. Vittori-Antisari, A.M. Serventi, E. Voltolini, “Mechanical behavior of nitrogen-implanted aluminium alloys,” Surface Coating Technology 83(1996) 284-289.

    [4] K.C. Walter,, R.A. Dodd , J.R. Conrad, “Corrosion behavior of nitrogen implanted aluminum,” Nuclear Instruments and Methods in Physics Research B 106 (1995) 522-526.

    [5] R. Sonnleitner., K. Spiradek-Hahna, F. Rossi, “Microstructure of plasma nitrided layers on aluminium,” Surface and Coatings Technology 156 (2002) 149–154.

    [6] Y. Hara, T. Yamanishi, K. Azuma, H. Uchida, M. Yatsuzuka, “Microstructure of Al-alloy surface implanted with high-dose nitrogen,” Surface and Coatings Technology 156 (2002) 166–169.

    [7] K. Hirano, R.P. Agarwala, M. Cohen, “Diffusion of Iron, Nickel and Cobalt in Aluminum,” Acta Metallurgica, Vol. 10, Issue 9, pp. 857-863, 1962.

    [8] D. Altenpohl, Aluminium and Aluminuim Legierungen, Springer Verlag, p. 773, 1965.

    [9] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction toCeramics, Chapter 2, John Wiley & Sons, Canada, 1991.

    [10] S.H. Lee, H.J. Ryoo, J.J. Lee, “(Ti1-xAlxN) coatings by plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A 12 (1994) 1602.

    [11] Munson, B. Cluggish, B. Wood, K. Walter , “Plasma Source Ion Implantation Research, Development, and Applications,” Progress Report 1997–1998.

    [12] 蔡文發博士, “電漿浸沒離子佈植技術,” 核研所PIII技術介紹。

    [13] Hongxi Liu , Baoyin Tang, Langping Wang, Xiaofeng Wang, Bo Jiang, “Fatigue life and mechanical behaviors of bearing steel by nitrogen plasma immersion ion implantation ,” Surface & Coatings Technology 201(2007) 5273–5277.

    [14] H.R Stock, C. Jarms, F. Seidel, J.E. Doring, “Fundamental and applied aspects of the plasma-assisted nitriding process for aluminum and its alloys,” Surface and Coating Technology 94-95(1997) 247-254.

    [15] 王超賢,電漿浸沒式離子佈植技術於氮化表面改質304不鏽鋼之應用研究,國立清華大學工程與系統科學系電漿組碩士論文,民國九十四年。

    [16] Douglas E. Wolfe , Jogender Singh, “Titanium carbide coatings deposited by reactive ion beam-assisted, electron beam–physical vapor deposition,” Surface and Coatings Technology 124 (2000) 142–153

    [17] D.A. Porter, K.E. Easterling, Phase Transformation in Metals and alloy, 2nd, pp. 144-147, 1992.

    [18] M.O. Speidel and M.V. Hyatt, Advances in corrosion science and technology,Plenum Press, NY, l(2), pp. 115-127, 1972.

    [19] 徐煌仁,AA7005鋁合金擠型材熱處理製程之研究,國立台灣科技大學機械工程研究所碩士論文,民國九十一年。

    [20] Tetsuji YamanishiU, Yoshihito Hara, Ryuhei Morita, Kingo Azuma, Etsuo Fujiwara, Mitsuyasu Yatsuzuka, “Profile of implanted nitrogen ions in Al alloy for mold materials,” Surface and Coatings Technology 136 _2001. 223]225.

    [21] R. Tsay, W.F. Tsai, G.P.Chou, C.F. Ai, “Surface modification of Ti-6Al-4V Alloys for biomedical applications by Plasma Immersion Ion Implantation technique,” 2008 Taiwan-Japan Bilateral Technology Interchange Project The Workshop on the Applications of Plasma to Bio-Medical Engineering Lunghwa University of Science and Technology, Taoyuan, Taiwan December 15-December 17, 2008.

    [22] C.H. Yang, S. Wang, W.F. Tsai, C.F Ai, H.H. Huang, “Improving the corrosion resistance of biomedical pure titanium using plasma immersion ion implantation technique” 中華民國防蝕工程學會 98 年度防蝕工程年會暨論文發表會。

    [23] 蔡瑞瑩,蔡文發,“電漿離子注入應用於人工關節表面改質之性能研究,”行政院原子能委員會委託研究計畫研究報告,2005。

    [24] 黃清添,析出製程參數對AA7005鋁擠型合金機械性質與抗應力腐蝕之影響,國立台灣科技大學機研所碩士論文,民國九十二年。

    [25] E. RichterU, R. Gunzel, S. Parasacandola, T. Telbizova, O. Kruse, W. Moller, “Nitriding of stainless steel and aluminium alloys by plasma immersion ion implantation,” Surface and Coatings Technology 128-29 (2000)21-27.

    [26] 陳哲雄,林俊勳,林紋瑞,吳靖宙, “原子力顯微鏡成像原理與中文簡易操作手冊,” 成功大學醫學工程所生醫感測實驗室。

    [27] I. E. Saklakog˘ lu, “Surface morphology and tribological behavior of AlSi10 alloys treated by plasma immersion ion implantation for automotive applications,” journal of materials processing technology 2 0 9 ( 2009 ) 1796–1802.

    [28] 蔡明瑞,電漿和網版印刷鍍膜材料表面改質,國立中央大學機械工程學系博士論文,民國九十九年。

    [29] Methods off Measuring Case Depth SAE Recommended Practice J423a, Society of Automotive Engineers, Warrendale, PA, 1963(reaffirmed 1990).

    [30] Measurement of Case Depth: Chapter 4 in “Caburizing and Carbonitriding,”prepared under the direction of ASM Committee on Gas Carburizing, American Society for Metals, Metals Park, OH, 1977.

    [31] Z. Zhan, X. Ma, L. Feng, Y. Sun, L.Xia, “Tribological behavior of aluminum alloys surface layer implanted with nitrogen ions by plasma immersion ion implantation,”Wear 220(1998) 161-167.

    [32] Kenneth G. Budinski “Engineering Materials”: Chapter. 10 in “Toll Steels Abrasion,” Prentice Hall, Inc, 1989.

    QR CODE