簡易檢索 / 詳目顯示

研究生: 陳暉
Hui Chen
論文名稱: 八字形電感器的建模和集成倍頻器達林頓放大器的壓控振盪器
Modeling of 8-shape Inductor and VCO Integrated with Frequency Doubler-Darlington Amplifier
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 張勝良
Sheng-Lyang Jang
宋峻宇
Jiun-Yu Sung
黃進芳
Jhin-Fang Huang
賴文政
Wen-Cheng Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 129
中文關鍵詞: 壓控振盪器電感等校模型八字電感八字電感電感等效模型
外文關鍵詞: Voltage-Controlled Oscillator, Inductor Modeling Circuit, 8-shaped Inductor, 8-shaped Inductor Circuit Model
相關次數: 點閱:115下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技和無線通訊系統的迅速發展,頻率合成器(或稱鎖相迴路PLL:Phase Locked Loop)在RFIC(無線射頻集成電路)中擔任著至關重要的角色。PLL的內部電路包含了相位偵測器(PFD)、電荷泵(CP)、環形濾波器(LF)、壓控震盪器(VCO)以及除頻器(FD)等組件。在高頻率應用中,壓控震盪器(VCO)成為PLL中最為關鍵的元件,它必須在保持高傳輸速度的同時,實現低功耗、低相位雜訊,並擁有更廣泛的工作範圍。

首先,我們將介紹一個利用電流回收的電路,包括一個VCO、一個頻率倍增器和一個達林頓放大器。頻率倍增器和達林頓放大器堆疊在VCO之上。電流重複使用的頻率倍增器(FD)電路接收來自電壓控制振盪器(VCO)的輸入信號,將較低頻率的振盪器與頻率倍增器(FD)串聯起來。頻率倍增器利用平衡的差動輸入來驅動FET對,消除輸出端的基波和奇次諧波。然而,平衡的頻率倍增器通常具有較低的轉換增益,因此需要一個放大器來放大輸出功率。整個電路的功耗為8.2毫瓦,輸出頻率範圍從15.773 GHz到15.043 GHz。在1MHz偏移頻率下的相位雜訊為-105.13 dBc/Hz,振盪頻率為15.988 GHz,圖中品質(FOM)值為-173.76 dBc/Hz,晶片的面積為1.07×1.19平方毫米。本章節與台大電子所博士生 鄭盛仁 共同開發。

第4章
接下來,我們將介紹八字形電感的集中式電路模型,以及帶有八字形電感的耦合電感的噪聲耦合模型。將磁場耦合噪聲電路模型與電感佈局所得的結果進行驗證。從耦合噪聲模型中,我們展示了磁場耦合的物理見解。
第5章
接下來,讓我們介紹兩個重要的EMC(電磁兼容性)設計問題:基板噪聲干擾和磁場耦合。本章介紹了耦合八角形電感的模擬和建模的耦合噪聲結果。首先,它模擬了兩個耦合的八角形電感的磁場耦合噪聲,以了解磁場耦合的物理見解。磁場耦合噪聲電路模型與電感佈局的結果進行了驗證。單端模型然後擴展到差動模型。

第6章
倒數第二章介紹了在0.18 μm CMOS工藝中實現的一個新型的VCO設計,具有一個單圈八字形電感。實現的VCO顯示了由變容器偏壓控制的4.5 GHz到5.31 GHz的振盪頻率。計算的FOM為-193.65 dBc/Hz。整個芯片佔用了0.6887×1.1538平方毫米的小面積。成功的電感設計將進一步推動電感佈局的設計。

第7章
最後,電感校準電路的應用可以幫助在不同的環境條件下保持VCO的一致性性能,提高系統的可靠性和信號質量。基於前幾章討論的八字形電感的集中式電路模型以及在0.18 μm CMOS工藝中實現的單圈八字形電感的VCO設計,我們將把八字形電感的等效模型納入其電路中。


First, we will introduce a circuit that utilizes current recycling, consisting of a VCO, a frequency multiplier, and a Darlington amplifier. The frequency multiplier and the Darlington amplifier are stacked on top of the VCO. The current-reusing frequency multiplier (FD) circuit receives the input signal from the Voltage-Controlled Oscillator (VCO), serially connecting the lower-frequency oscillator with the frequency multiplier (FD). The frequency multiplier utilizes balanced differential input to drive FET pairs, eliminating the fundamental and odd-order harmonics at the output. However, balanced frequency multipliers typically have lower conversion gain, necessitating an amplifier to amplify the output power. The overall circuit power consumption is 8.2 milliwatts, with an output frequency ranging from 15.773 GHz to 15.043 GHz. The phase noise at a 1MHz offset frequency is -105.13 dBc/Hz, with an oscillation frequency of 15.988 GHz and a Figure of Merit (FOM) value of -173.76 dBc/Hz. The chip's area is 1.07×1.19 mm². This chapter was co-developed with Dr. Sheng-Jen Cheng, a Ph.D. from the Department of Electrical Engineering at National Taiwan University.

Next, the lumped circuit model of the 8-shape inductor is introduced, along with the noise coupling model of coupled inductors featuring 8-shape inductors. The magnetic field coupling noise circuit model is verified against the results obtained from the inductor layout. From the coupling noise models the physics insight of magnetic field coupling is illustrated.

Next, let's introduce two important EMC (Electromagnetic Compatibility) design issues: substrate noise interference and magnetic field coupling. This chapter presents the simulation and modeled coupling noise results from coupled octagonal inductors. First, it models the magnetic field coupling noise of two coupled octagonal inductors to see the physics insight of magnetic field coupling. The magnetic field coupling noise circuit model is verified against the results from the inductor layout. The single-ended models were then extended to differential models.

The penultimate chapter presents a novel VCO design realized in a 0.18 μm CMOS process, featuring a single-turn 8-shape inductor. The implemented VCO shows the oscillation frequency from 4.5 GHz to 5.31 GHz controlled by varactor bias. The calculated FOM is -193.65 dBc/Hz. The entire chip occupies a small area, only 0.6887×1.1538 mm2. The successful inductor design will further advance the design of inductor layouts.

Finally, the application of inductor calibration circuits can help maintain consistent performance for VCO under varying environmental conditions, enhancing system reliability and signal quality. Expanding on the lumped circuit model of the 8-shape inductor discussed in previous chapters, as well as the VCO design implemented using a single-turn 8-shape inductor in a 0.18 μm CMOS process, we will incorporate the equivalent model of the 8-shape inductor into its circuit.

致謝 I 中文摘要 II Abstract IV Table of Contents VI List of Figures IX List of Table XV Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 4 Chapter 2 Overview of the Voltage-Controlled Oscillator 7 2.1 Introduction 7 2.2 Oscillators Theory 8 2.2.1 Feedback (Two Port) 10 (i) Positive feedback 10 (ii) Negative feedback 11 2.2.2 Negative Resistance & Resonator (One Port) 14 2.3 Category of Oscillators 16 2.3.1 Ring Oscillator 16 2.3.2 LC-Tank Oscillator 17 2.4 Research of RLC Tank 21 2.5 Type of LC Oscillator 24 2.5.1 One-Port Oscillator (Negative-Gm Oscillator) 25 2.5.3 Cross-Coupled Oscillator 29 2.5.4 Complementary Cross-Couple Topology 31 2.6 Design Index of Voltage-Controlled Oscillator 32 2.6.1 Center Frequency [Hz] 32 2.6.2 Output Signal Power [dBm] 33 2.6.3 Power Dissipation [mW] 33 2.6.4 Tuning Range [Hz] 34 2.6.5 Phase Noise [dBc/Hz] 36 2.6.6 Quality Factor 42 2.6.7 Figure of Merit 44 2.7 Inductor Design in VCO 45 2.7.1 Inductor 45 2.7.2 Transformer Design 54 Chapter 3 VCO Integrated with Frequency Doubler-Darlington Amplifier 60 3.1 Introduction 60 3.2 Circuit Design 62 A. VCO and FD 62 B. Darlington Amplifier 63 3.3 Measurement Results and Discussion 68 Chapter 4 Modeling of 8-shaped Inductors and Magnetic Field Coupling Noise 77 4.1 Introduction 77 4.2 Modeling of eight-shape inductor 78 4.3 Modeling of eight-shape inductor transformer 88 4.4 Noise Coupling of 8-shaped and Octagonal Inductor 91 Chapter 5 Coupling Noise Modeling of Octagonal Inductors and 8-shape Inductors 96 5.1 Introduction 96 5.2 Octagonal inductor circuit Design 97 Chapter 6 Design of Oscillator Using Three- and One-Turn 8-shaped Inductors 106 6.1 Introduction 106 6.2 Circuit Design 107 6.3 Measurement Results and Discussion 111 Chapter 7 8-shape Inductor Equivalent Model for VCO 118 7.1 Introduction 118 7.2 Simulation Results and Discussion 119 Chapter 8 Conclusion 124 References 126

[1] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
[2] N. M. Nguyen and R. G. Meyer, "Start-up and frequency stability in high-frequency oscillators," IEEE Journal of Solid-State Circuits, vol. 27, no. 5, pp. 810-820, 1992, doi: 10.1109/4.133172
[3] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
[4] B. Razavi, Design of Analog CMOS Integrated Circuits, MC Graw Hall,2001.
[5] B. Razavi, “Design of Integrated Circuits for Optical Communications”, Mc Graw Hill.
[6] S. H. Lee, S. L. Jang, “Implementation of New High-Frequency CMOS VCOs and Injection-Locked Frequency Dividers,” April 2007.
[7] J. Aguilera, and R. Berenguer, “Design and test of integrated inductors for RF applications,” Kluwer Academic Publishers, 2004.
[8] B. De Muer, M. Borremans, M. Steyaert, and G. Li. Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
[9] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press, 1998.
[10] T. H. Lee, “The design of CMOS radio frequency integrated circuits”, Cambridge University Press, 1998.
[11] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
[12] S.Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1001-1003, 2002.
[13] T. H. Lee, “The Design of CMOS Radio Frequency Integrated Circuits,” Cambridge University Press, 1998.
[14] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
[15] T. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000
[16] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
[17] Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, April 2001.
[18] P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996
[19] Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Springer 1999.
[20] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sep. 2000.
[21] Marc Tiebout, Low Power VCO Design in CMOS, Springer 2009.

[22] J. Oh, J. Jang, C. Kim, and S. Hong, “A W-band high-efficiency CMOS differential current-reused frequency doubler,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 5, pp. 307–309, May 2015.
[23] S.-W. Chu, C.-K. Wang, “An 80 GHz wide tuning range push-push VCO With gm-boosted full-wave rectification technique in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 203–205, April 2012.
[24] L. Li, P. Reynaert, and M. S. J. Steyaert, “A 60-GHz CMOS VCO using capacitance-splitting and gate–drain impedance-balancing techniques,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 406–413, Jan. 2011.
[25] Y.-H. Chang, “Low-voltage dual-band CMOS voltage-controlled oscillator for Ka-Band and V-Band applications,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 12, pp. 1307–1310, Dec 2021.
[26] M. H. Kashani, R. Molavi, and S. Mirabbasi, “A 2.3-mW 26.3-GHz Gm-boosted differential colpitts VCO with 20% tuning range in 65-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 4, pp. 1556–1565, Apr. 2019.
[27] M. Haghi Kashani, A. Tarkeshdouz, R. Molavi, A. Sheikholeslami, E. Afshari, and S. Mirabbasi, “On the design of a high-performance mm-wave VCO with switchable triple-coupled transformer,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 11, pp. 4450–4464, Nov. 2019.
[28] Y.-T. Chang and H.-C. Lu, “A K-band high-efficiency VCO using current reused technique,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 12,pp. 1134–1136, Dec. 2017.
[29] W. Zou, X. Zou, D. Ren, K. Zhang, D. Liu, and Z. Ren, “2.49-4.91 GHz wideband VCO with optimised 8-shaped inductor,” Electron. Lett., vol. 55, no. 1, pp. 55–57, Jan. 2019.
[30] C. Durand, F. Gianesello, and D. Gloria, “Innovative 8-shaped inductors integrated in an advanced BiCMOS technology,” in Proc. IEEE Top. Meeting Silicon Monolithic Integr. Circuits RF Syst., Jun. 2011, pp. 81–84.
[31] Mahmoud, A., Fanori, L., Mattsson, T. et al. A 2.8-to-5.8 GHz harmonic VCO based on an 8-VCO based on an 8-shaped inductor in a 28 nm UTBB FD-SOI CMOS process. Analog Integr Circ Sig Process 88, 391–399 (2016).
[32] V. Issakov, A. Werthof, J. Rimmelspacher, R. Weigel and A. Geiselbrechtinger, "Experimental study on crosstalk reduction between integrated inductors up to millimeter-wave regime," 2018 91st ARFTG Microwave Measurement Conference (ARFTG), Philadelphia, PA, USA, 2018, pp. 1-4, doi: 10.1109/ARFTG.2018.8423809.
[33] H.-C. Lee, S.-L. Jang, H.-W. Liu, and L. Y. Chen.” Divide-by-2 injection-locked frequency divider exploiting an 8-shaped inductor,” Microw Opt Technol Lett. 2021; 63:1024–1028. https://doi.org/10.1002/mop.326731028LEEET AL.
[34] H. -C. Lee, S. -L. Jang and R. -X. Yang, "Low power CMOS VCO using an 8-shaped transformer," 2023 IEEE 23rd Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Las Vegas, NV, USA, 2023, pp. 19-21, doi: 10.1109/SiRF56960.2023.10046255.
[35] Q. Zhang, Y. Wu, C. Zhao, H. Liu, Y. Yu, and K. Kang, “An improved wideband equivalent circuit model for integrated spiral inductors in CMOS technology,” Int. J. Numer. Model., Electron. Netw., Devices Fields, vol. 33, no. 3, Jul. 2019, Art. no. e2640.
[36] H S Wang, W L He, M H Zhang, L Tang. An improved single-π equivalent circuit model for on-chip inductors in GaAs process[J]. J. Semicond., 2017, 38(11): 114010. doi: 10.1088/1674-4926/38/11/114010.
[37] S. K. Mandal, A. De, A. Patra, and S. Sural, “A wide-band lumped element compact CAD model of Si-based planar spiral inductor for RFIC design,” in Proc. 19th Int. Conf. VLSI Design, 2006, pp. 619–624.
[38] H. H. Chen, H. W. Zhang, S. J. Chung, J. T. Kuo, and T. C. Wu, “Accurate systematic model-parameter extraction for on-chip spiral inductors,” IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 3267–3273, Nov. 2008, doi: 10.1109/TED.2008.2005131.
[39] J. Sathyasree, V. Vanukuru, D. R. Nair, and A. Chakravorty, “A substrate model for on-chip tapered spiral inductors with forward and reverse excitations,” IEEE Trans. Electron Devices, vol. 66, no. 1, pp. 802–805, Jan. 2019, doi: 10.1109/TED.2018.2873796.
[40] J. Gil and H. Shin, “A simple wide-band on-chip inductor model for silicon-based RF ICs,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 9, pp. 2023–2028, Sep. 2003.
[41] M. H. M. Ali, C. -L. Ler, S. C. Rustagi, Y. M. Yusof, N. D. Arora and B. Y. Majlis, "The impact of electromagnetic coupling of guard ring metal lines on the performance of on-chip spiral inductor in silicon CMOS," 2nd Asia Symposium on Quality Electronic Design (ASQED), Penang, Malaysia, 2010, pp. 285-288, doi: 10.1109/ASQED.2010.5548257.
[42] A. O. Adan, M. Fukumi, K. Higashi, T. Suyama, M. Miyamoto and M. Hayashi, "Electromagnetic coupling effects in RF CMOS circuits," 2002 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Papers (Cat. No.02CH37280), Seattle, WA, USA, 2002, pp. 293-296, doi: 10.1109/RFIC.2002.1012052.
[43] H. Wang, M. Lan, Y. Xiong, and H. Liu, "On‐chip multiple‐coupled inductors modeling on silicon for millimeter‐wave applications," Microw Opt Technol Lett., 2022;64:998‐1005.doi:10.1002/mop.33221.
[44] Z. Gao et al., "Analysis and equivalent-circuit model for CMOS on-chip multiple coupled inductors in the millimeter-wave region," in IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 3957-3964, Dec. 2015, doi: 10.1109/TED.2015.2488840.
[45] K. Kang, Z. Zong, Z. Gao, Y.-L. Ban, B. Staszewski, and W.-Y. Yin, “Characterization and modeling of multiple coupled inductors based on on-chip four-port measurement,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 4, no. 10, pp. 1696–1704, Oct. 2014.
[46] J. H. Mikkelsen, O. K. Jensen and T. Larsen, "Measurement and modeling of coupling effects of CMOS on-chip coplanar inductors," Digest of Papers. 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2004., Atlanta, GA, USA, 2004, pp. 37-40, doi: 10.1109/SMIC.2004.1398161.
[47] J. H. Mikkelsen, O. K. Jensen and T. Larsen, "Crosstalk coupling effects of CMOS co-planar spiral inductors," Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571), Orlando, FL, USA, 2004, pp. 371-374, doi: 10.1109/CICC.2004.1358825.
[48] F. Vecchi, M. Repossi, A. Mazzanti, P. Arcioni, and F. Svelto, “A simple and complete circuit model for the coupling between symmetrical spiral inductors in silicon RF-ICs,” in IEEE RFIC Symp. Dig., Jun. 2008, pp. 479–482.
[49] W. Zou, X. Zou, D. Ren, K. Zhang, D. Liu, and Z. Ren, “2.49-4.91 GHz wideband VCO with optimised 8-shaped inductor,” Electron. Lett., vol. 55, no. 1, pp. 55–57, Jan. 2019.
[50] Mahmoud, A., Fanori, L., Mattsson, T. et al., "A 2.8-to-5.8 GHz harmonic VCO based on an 8-shaped inductor in a 28 nm UTBB FD-SOI CMOS process," Analog Integr Circ Sig Process 88, 391–399 (2016). https://doi.org/10.1007/s10470-016-0759-4
[51] P. Martin, R. Horn and K. Ben Atar, "A multi-turn twisted inductor for on-chip cross-talk reduction," 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE), 2016, pp. 1-5, doi: 10.1109/ICSEE.2016.7806138.
[52] H.-C. Lee, S.–L. Jang, H.‐C. Lee, H.‐W. Liu, and L. Y. Chen,” Divide-by-2 injection-locked frequency divider exploiting an 8-shaped inductor,” Microw Opt Technol Lett. 2020;1–5.
[53] W. Schoenmaker, M. Matthes, B. De Smedt, S. Baumanns, C. Tischendorf and R. Janssen, "Large signal simulation of integrated inductors on semi-conducting substrates," 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012, pp. 1221-1226, doi: 10.1109/DATE.2012.6176679.
[54] Y. Peng et al., "A harmonic-tuned VCO with an intrinsic-high-Q F23 inductor in 65-nm CMOS," IEEE Microw. Wireless Compon. Lett., vol. 30, no. 10, pp. 981-984, Oct. 2020, doi: 10.1109/LMWC.2020.3016300.
[55] Z. Zong, G. Mangraviti and P. Wambacq, "Low 1/f3 Noise Corner LC-VCO Design Using Flicker Noise Filtering Technique in 22nm FD-SOI," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 5, pp. 1469-1480, May 2020, doi: 10.1109/TCSI.2020.2970267.

QR CODE