簡易檢索 / 詳目顯示

研究生: 黃裕文
YU-WEN HUANG
論文名稱: 以帶通濾波器為基礎之微波振盪器研製
Development of microwave oscillators based on bandpass filters
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 陳士元
Shih-Yuan Chen
王蒼容
Chun-Long Wang
馬自莊
Tzyh-Ghuang Ma
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 56
中文關鍵詞: 微波振盪器濾波器為基礎之振盪器微波濾波器
外文關鍵詞: Microwave oscillator, filter-based oscillator, microwave filter.
相關次數: 點閱:204下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要係使用微波帶通濾波器作為迴授振盪器之選頻元件,以實現低相位雜訊振盪器。因帶通濾波器係以多共振器所合成,可提供較單一共振器佳之品質因數,用以設計振盪器,將可獲致較佳之相位雜訊。該新型振盪器之設計概念、實現方式及量測模擬結果皆於本論文中詳細討論。
本論文第二章將探討迴授振盪器的工作原理,並以實驗方式探討穩定輸出振盪器之穩定條件。另一方面,本論文將採用「複數品質因數」以估算振盪器之整體Q值,因該Q值不僅考慮相位響應隨頻率之導數,亦同時考慮振幅之影響,理論上較為完備,故可較精準推估振盪器之相位雜訊效能。
第三章則將第二章之理論應用於研製低相位雜訊振盪器。本章分別使用段枝帶通濾波器、步階阻抗T型濾波器及網狀式步階阻抗T型濾波器作為振盪器迴路中之選頻元件,以實現低相位雜訊振盪器。因使用步階阻抗T型濾波器所設計之振盪器操作於1 GHz,為了縮小電路面積尺寸,將步階阻抗共振器變形成網狀共振器,使整體振盪器電路縮小約38 %。另一方面,本論文亦使用步階阻抗T型濾波器設計5 GHz振盪器,以驗證該電路架構亦適用於較高之操作頻段。
由本論文之模擬及實驗結果得知,設計以濾波器為基礎之迴授式振盪器,其迴路上選頻濾波器可為具傳輸零點或不具傳輸零點之濾波器,只要該濾波器可提供較單一共振器高之Q值,即可應用於設計低雜訊振盪器。


The aim of this thesis is using a microwave bandpass filter as a frequency selective element of the feedback oscillator to implement a low phase noise oscillator. Since the bnadpass filter is synthesized by multiple resonators, it can provide a batter quality factor for the oscillator design. The detailed circuit design concept, implementation, and verification of the developed oscillator are presented in this thesis.
Chapter 2 will mention the design principle of the feedback oscillator and experimentally verify the condition of the stable oscillation. On the other hand, in this thesis the “complex quality factor” will be used to estimate the Q value of the overall oscillator. This type of Q factor not only considers the derivative with respect to frequency but also the effect of the amplitude. Hence, the complex Q factor is more rigorous to estimate the phase noise performance of the oscillator.
In Chapter 3, the design procedures in Chap 2 will be applied to implement low phase noise oscillators. Instead of using a simple resonator, the stub filter, T-shaped stepped-impedance resonator (SIR) bandpass filter and net-type T-shaped SIR bandpass filter are employed to be the frequency selective elements of the feedback loop oscillators. The oscillator with T-shaped SIR filter is designed at 1 GHz. To reduce the circuit size, the SIR resonator evolves into a net-type resonator to achieve a 38 % circuit size of the original one. On the other hand, this thesis also uses the T-shaped SIR bandpass filter to design a 5 GHz oscillator to demonstrate that the proposed circuit topology is also suitable for the high frequency application.
Based on the simulated and measured results of this thesis, regardless of having transmission zeros, as the bandpass filter can provide a peak value of the complex Q, it can be successfully utilized to design a low phase noise oscillator.

摘要 Abstract 目錄 第一章 緒論 1-1研究動機與目的 1-2 文獻探討 1-3 章節說明 第二章 迴授振盪器工作原理及概述 2-1 迴授振盪器 2-2 複數品質因數 2-3無選頻元件之迴授振盪器研製 第三章 以濾波器為基礎之微波振盪器研製 3-1使用寬頻帶通濾波器實現振盪器 3-1-1 段枝帶通濾波器 3-1-2 使用段枝帶通濾波器實現低雜訊振盪器 3-2使用步階阻抗T型濾波器實現振盪器 3-2-1 步階阻抗T型濾波器 3-2-2 使用步階阻抗T型濾波器實現低雜訊振盪器 3-2-3 網狀步階阻抗T型濾波器 3-2-4 使用網狀步階阻抗T型濾波器實現低雜訊振盪器 3-2-5 5 GHz低雜訊振盪器使用步階阻抗T型濾波器 3-3 振盪器之效能指標 第四章 結論 參考文獻 附錄 A Infineon SIEGET BJT BFP405 規格 附錄 B NEC HJ-FET NE3514S02 規格

[1] J. Choi, M. C. Chen, and A. Mortazawi, “An X-band low phase-noise oscillator employing a four-pole elliptic-response microstrip filter,” in IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, HI, 2007, pp. 1529-1532.
[2] J. Choi, M. Nick, and A. Mortazawi, “Low phase-noise planar oscillator employing elliptic-response bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1959–1965, Aug. 2009.
[3] M. Nick and A. Mortazawi, “Low phase-noise planar oscillator based on low-noise active resonators,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1959–1965, May 2010.
[4] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329–330, Feb. 1966.
[5] G. Gonzalez, Foundations of Oscillator Circuit Design. Norwood, MA: Artech House, 2007.
[6] T. Ohira, “Rigorous Q factor formulation for one- and two-port passive linear networks form an oscillator noise spectrum viewpoint,” IEEE Trans. Circuits Syst. II, vol. 52, no. 12, pp. 846–850, Dec. 2005.
[7] T. Ohira and K. Araki, “Oscillator frequency spectrum as viewed from resonant energy storage and complex Q factor” IEICE Electron. Express, vol. 3, no. 16, pp.385-389, Aug. 2006 .
[8] S. Cohn, “Parallel-coupled transmission-line resonator filters,” IRE Trans. Microw. Theory Tech., vol. MTT-6, no. 4, pp. 223–231, Apr. 1958.
[9] G. L. Matthaei, “Interdigital bnad-pass filters,” IRE Trans. Microw. Theory Tech., vol. MTT-10, no. 6, pp. 479–491, Nov. 1962.
[10] J.-S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Application. New York: Wiley , 2001.
[11] C.-L. Chang and C.-H. Tseng, “A compact second harmonic-suppressed bandpass filter using π-equivalent transmission lines,” in Proc. 22nd Asia-Pacific Microwave Conf., Yokohama, Japan, Dec. 2010, pp.837-840.
[12] Y.-W. Huang, C.-L. Chang and C.-H. Tseng, “Filter-based low phase-noise microwave oscillators,” in Proc. 22nd Asia-Pacific Microwave Conf., Yokohama, Japan, Dec. 2010, pp.481-484.
[13] M. Makimoto and S. Yamashita, “Bandpass filter using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. MTT-28, no. 12, pp. 1413–1417, Dec. 1980.
[14] Y.-M. Chen, S.-F. Chang, and C.-L. Wei, “A compact millimeter-wave COMS bandpass filter using stepped-impedance cross resonator,” in Proc. 22nd Asia-Pacific Microwave Conf., Yokohama, Japan, Dec. 2010, pp.829-832.
[15] C.-F. Chen, T.-Y. Huang, and R. B. Wu, “Novel compact net-type resonators and their applications to microstrip bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 755–762, Feb. 2006.

QR CODE