簡易檢索 / 詳目顯示

研究生: 徐智禎
Chih-Chen Hsu
論文名稱: 以等長線及嵌入型架構設計微波濾波器
Design of Microwave Filter Using Equal-Length Line and Embedded Structure
指導教授: 徐敬文
Ching-Wen Hsue
口試委員: 黃進芳
Jhin-Fang Huang
張勝良
Sheng-Lyang Jang
劉榮宜
Ron-Yi Liu
陳一鋒
I-Fong Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 76
中文關鍵詞: 嵌入型殘枝窄頻帶拒濾波器離散時域技術
外文關鍵詞: embedded stub, narrow stop-band filter, discrete time technique
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微波帶拒濾波器可用來過濾特定頻率的傳輸信號,但是其衰減斜率的好壞會影響到信號過濾的程度。本篇論文提出一個嵌入型兩段開路殘枝的帶拒濾波器架構,其衰減斜率較一般微帶線並聯開路殘枝較優良且頻寬較窄。經由控制正確頻率下的嵌入型兩段開路殘枝,可以得到任意一個頻寬的帶拒濾波器。
    另外,我們提出在Z域下等長三段式並聯開路殘枝的鏈散射參數,以此架構加上已經發展出的兩段式並聯開路殘枝,設計出離散時間低通帶濾波器,其效果相較於傳統用頻域方法設計出來的低通濾波器較好。最後,把前面提出的嵌入型兩段開路殘枝應用在此低通濾波器,改善其衰減斜率。實驗結果被提出來驗證此方法可行性。


    Microwave band-stop filter is able to filter a given transmitted signal, but its rate of cutoff will affect the degree of signal filtering. In this thesis, we propose a new embedded two-section open-circuited band-stop filter. In this structure, the rate of cutoff is sharper than conventional microstrip line shunted with open stub; moreover, its bandwidth is also narrower. The desired bandwidth of band-stop filter can be obtained by controlling the embedded two-section open stub.
    Besides, we propose the chain-scattering parameters of equal-length three-section open stub in Z-domain, and then we design a discrete-time low-pass filter using three-section structure and the well-developed two-section open stub. Its performance is better than the conventional low-pass filter using frequency-domain method. Finally, we apply the embedded two-section open stub to the Chebyshev type II low-pass filter to improve its rate of cutoff. Experimental results are presented to illustrate the validity of this design method.

    摘要..........................................................................I Abstract.....................................................................II 誌謝....................................................................... III Contents.....................................................................IV List of Figures..............................................................VI Chapter 1 Introduction........................................................1 1.1 Motivation................................................................1 1.2 Proposal..................................................................2 1.3 Outline of Chapters.......................................................4 Chapter 2 Basic Theory........................................................5 2.1 Discrete-Time Filter......................................................5 2.2 Bilinear Transformation...................................................7 2.3 Microstrip Line...........................................................9 Chapter 3 Transfer Functions of Transmission Line and Cascaded Networks......11 3.1 Chain-Scattering Parameters..............................................12 3.2 Fundamental Circuits and Their Chain-Scattering Parameters...............14 3.2.1 A Serial Transmission-Line Section.....................................14 3.2.2 An Open-Circuited Single-Section Stub..................................18 3.2.3 A Short-Circuited Single-Section Stub..................................20 3.2.4 An Open-Circuited Double-Section Stub..................................22 3.2.5 An Open-Circuited Three-Section Stub...................................24 3.3 Transfer Functions of Cascaded Network...................................26 3.4 Conversion of System Function into Autoregressive Process................28 Chapter 4 Notch Filter Using Two-Section Open Stub and Its Application to Embedded Structure...........................................................31 4.1 Notch Filter Using Two-Section Open Stub.................................31 4.2 Notch Filter Using Embedded Structure....................................40 4.2.1 Character of Notch Filter with Embedded Open-Circuited Stub............40 4.2.2 Notch Filter with Embedded Two-section Open-Circuited Stub.............43 Chapter 5 Implementation and Experimental Result.............................49 5.1 Notch filters using Embedded Two-Section Stub............................49 5.2 A Low-Pass Filter Using Multiple-Section Stubs...........................53 5.3 The Applications of Embedded Two-Section Open Stub on Microwave Low-Pass Filters......................................................................61 Chapter 6 Conclusion and Future Work.........................................64 6.1 Conclusion...............................................................64 6.2 Future Work..............................................................64 Reference....................................................................66

    [1] S. Amari and U. Rosenberg. “Direct synthesis of a class of bandstop filters,” IEEE Trans. Microwave Theory Tech.,vol. 51,no.4,pp. 1241-1246 ,April.2003

    [2] H. Uchida, H. Kamino, K. Totani, N. Miyazaki, Y. Konishi, S. Makino J. Hirokawa and M. Ando, “Dual-band-rejection filter for distortion reduction and RF transmitter,” IEEE Trans. Microwave Theory Tech.,vol.52,no.11,pp.2550 -2556,Nov.2004

    [3] B.Strassner and K.Chang,”Wide-band low loss high-isolation microstrip periodic-stub diplexer for multiple-frequency applications,”IEEE Trans. Microwave Theory Tech., vol. 49, no.10, pp. 1818-1820, Oct.2001

    [4] H. C. Bell, “L-resonator bandstop filters,” IEEE Trans. Microwave Theory Tech.,vol.44, no.12, pp.2669-2672,Dec.1996

    [5] C. Rauscha, “Varactor-tuned active notch filter with low passband noise and signal distortion,” IEEE Trans. Microwave Theory Tech., vol.49, no.8, pp.1431-1437,Aug.2001

    [6] R. N. Bates, “Design of microstrip spur-line band-stop filters,” IEE Int. J. Microw., Opt. Acoust., vol. 1, no. 6, pp. 209-214, Nov. 1977.

    [7] H. Shaman, and J.-S. Hong., ‘Ultra-wideband (UWB) bandpass filter with embedded band notch structures’, IEEE Microw. Wireless Compon. Lett , vol. 17, no. 3, pp. 193-195, March 2007.

    [8] P. A. Regalia, S. K. Mittra and P. P. Vaidyanathan, “The digital all-pass filter: A versatile signal processing building block,” Proc. IEEE, vol. 76, pp. 19-37, Jan. 1988.

    [9] A. V. Oppenheim, R.W. Schafer, and J.R. Buck, “Discrete-Time Signal Processing,” 2nd Ed., Prentice Hall, Inc, 1999.

    [10] I.J Bahl and D.k. Trivedi, “A Designer’s Guide to Microstrip Line,” Microvave, May 1977.

    [11] K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Liines and Slotilines, Artech House, Dedham, Mass.

    [12] D. M. Pozar, “Microwave Engineering,” 3nd ED., John Wiley & Sons, Inc.,2003.

    [13] D. K. Cheng, “Field and Wave Electromagnetics,” Addison-Wesley Publishing Company, Inc.,1989.

    [14] Da-Chiang Chang and Ching-Wen Hsue, “Design and implementation of filters using transfer functions in the Z domain”, IEEE Trans. Microwave Theory Tech., vol.50, pp.979-985, May 2001.

    [15] Jia-Sheng Hong and M. J. Lancaster, Microstrip Filters for RF/Micorwave Applications, NJ:John Wiley&Sons, 2001

    [16] S. B. Cohn, “Parallel transmission-line-resonator filters,” IRE Trans. MTT, vol. MTT-6, pp. 223-231, April 1958.

    [17] T. Edwards, “Foundations for Microstrip Circuit Design,” New York: John Wiley & Sons, 1991.

    [18] D. Hanselman and B. Littlefield, Mastering MATLAB 5. Englewood Cliffs, NJ: Prentice Hall, 1998

    [19] Lawrence P. Huelsman, Active and Passive Analog Filter Design, NJ: McGraw-Hall, 1993.

    [20] A. Gopinath and C. Gupta, “Capacitance Parameters of Discontinuities in Microstrip line.” IEEE Trans. Microwave Theory Thch., vol. MTT-26, pp.831-836, Oct. 1978.

    無法下載圖示 全文公開日期 2013/07/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE