簡易檢索 / 詳目顯示

研究生: 何宗育
Czung-Yu Ho
論文名稱: 利用紫外光致相分離原理製作液晶分子垂直配向共聚薄膜及其光電特性探討
Fabrication of Vertical Alignment Composite Film (VACOF) for Liquid Crystal Molecules by Ultra-Violet Light Induce Phase Separation Principle and Their Electro-Optical Characteristics
指導教授: 李俊毅
Jiunn-Yih Lee
口試委員: 邱顯堂
none
邱士軒
none
張豐志
none
陳志勇
none
吳勛隆
none
鄭功龍
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 212
中文關鍵詞: 光電特性垂直配向共聚薄膜預聚物液晶非接觸電誘導分子傾斜角效應
外文關鍵詞: Electro-Optical characteristic, Vertical alignment copolymer film, Pre-polymer, Liquid crystal, Non-contact, Electroclinic effect
相關次數: 點閱:370下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用非接觸光聚合誘發液晶(Liquid crystal, LC)與預聚物(Pre-polymer)產生其相分離行為後,以形成具有垂直配向效果的擬-聚合物(Polymer)薄膜。而在分子結構設計方面,我們採用具有烷基長碳鏈(Alkyl long carbon chain)和主鏈雙酚型(Main chain biphenol type)等光硬化壓克力預聚物(Photo-curable acrylic pre-polymer)並摻混光起始劑(Photo-initiator)以及負誘電異方型液晶(Negative dielectric anisotropy type liquid crystal, NLC)等成份,經充分攪拌與超音波震盪形成均一的液晶混合溶液(NLC/photo-curable acrylic pre-polymer mixture systems)。我們最初的構想是希望將此液晶混合溶液在經由紫外光(Ultra-violet, UV)照射後,因光聚合誘發相分離(Photo-polymerization induced phase separation, PIPS),使得NLC與photo-curable acrylic pre-polymer產生複合層化結構之垂直配向共聚薄膜(Vertical alignment copolymer film, VACOF)。而此新穎的光配向技術不僅可改善傳統摩擦(Rubbing)配向製程所產生的缺點以提升其良率之外,我們也期盼朝著製程縮短化以及面板低價化之目標邁進。
    而本論文主要分為三大實驗系統。首先,我們主要探討此負型液晶/壓克力預聚物混合系統的光配向機制以及觀察液晶分子在不同碳鏈長度的烷基壓克力預聚物A之改變下,以量測液晶元件(LC device)的對比度(Contrast ratio)、光穿透度(Transmittance)以及反應時間(Response time)等光電特性(Electro-Optical characteristic)。而後,經由儀器量測出來的結果,如閥電壓(Threshold voltage, Vth)、驅動電壓(Driving voltage, Von)、飽和電壓(Saturation voltage, Vsat)以及反應時間等,我們大致可以推測其系統所生成之VACOF表面的錨定能(Anchoring energy)及其液晶分子的配向機制,藉以觀察對於不同碳鏈長度的烷基壓克力預聚物與液晶分子之間的相互作用力等關係。其次則是針對不同長度的主鏈雙酚型壓克力預聚物B之分子結構與液晶試片厚度(2 μm, 4 μm and 6 μm)下,對於VACOF表面微結構的影響、液晶元件的顯示情形以及光電特性等進行量測分析與探討。最後,我們希望藉由本實驗室所合成的雙旋光性液晶(Two chiral centres smectic A phase, SmA*)在摻入光致垂直配向之負型液晶/壓克力預聚物混合系統後,藉以達到輔助液晶分子整體垂直排列效果為其實驗之主要目的之一(SmA*液晶在正交偏光顯微鏡下為呈現垂直排列的紋理(Homeotropic texture))。另外,由於SmA*液晶本身具有電誘導分子傾斜角效應(Electroclinic effect),擁有比鐵電性(Ferroelectric)液晶還要快的反應時間,如此具有其快速應答、記憶性以及擁有可調變光線通過之灰階等特性。因此,我們希望藉由這些優點能夠改善原系統之光電性質。


    In the study, we use non-contact photo-polymerization induced liquid crystal (LC) and pre-polymer to form a vertical alignment (VA) effect of pseudo-Polymer thin film after the phase separation. In the molecular structure design, we utilize photo-curable acrylic pre-polymer, (alkyl long carbon chain and main chain biphenol type etc.) and mix photo-initiator and negative dielectric anisotropy type liquid crystal (NLC) etc. component together. Forming the homogeneous LC mixture solution (NLC/photo-curable acrylic pre-polymer mixture systems) is via enough stirred and ultrasonic vibration. We use photo-polymerization induced phase separation (PIPS) effect, and to make the NLC and the photo-curable acrylic pre-polymer generate composite layer structure of the vertical alignment copolymer film (VACOF) after the Ultra-Violet (UV) light irradiation. The photo alignment of this novel technology can not only improve the traditional rubbing alignment shortcoming but also promote yield of the process. Our goal is expecting toward shortening the process for manufacture and decreasing the cost of the panel.
    This paper was mainly divided into three experimental systems. First of all, we discussed the photo-alignment mechanism for the negative-type LC/acrylic pre-polymers mixture systems and measured electro-optical characteristic of the LC device, such as the contrast ratio, transmittance, response time etc. of the LC molecules under variant carbon chain length of alkyl acrylic photo-alignment A. By the quantitative data such as threshold voltage (Vth), driving voltage (Von), saturation voltage (Vsat) and reaction time and so on, we could extrapolate the anchoring energy of VACOF surface in this systems, the photo-alignment mechanism of LC molecules and the interaction between the acrylic pre-polymers of different alkyl chain length and the LC molecules and so forth. Secondly, we analyzed and discussed the influence on VACOF surface micro-structure, LC device’s display conditions and electro-optical properties in the molecule structure of main chain bisphenol type acrylic pre-polymers B of different length and the LC cell of different thickness (2 μm, 4 μm and 6 μm). Finally, we expect to arrange overall LC molecules in a vertical alignment by mixing two chiral centres smectic A (SmA *) LC synthesized in our laboratory with photo-induced vertical alignment negative type LC/acrylic pre-polymer mixture systems. (SmA* LC resulted in a homeotropic texture under the POM with crossed polarizers). In addition, due to the SmA* LC exhibits the electrical field induced molecular tilt effect (electroclinic effect) and offers faster response time than ferroelectric LC, it has the characteristics of fast response and memory, and further allows for the gray-scale capability of adjusting the amount of light passing through etc. We hope to take advantage of the SmA* LC materials to improve electro-optical characteristics of the original system.

    目錄 中文摘要•••I Abstract•••II 誌謝•••III 圖目錄•••X 表目錄•••XIV 第一章 緒論•••1 1.1 前言•••1 1.2 液晶簡介•••1 1.3 液晶形成的條件•••2 1.4 液晶的分子配列構造與種類•••3 1.4.1 液晶高分子簡介•••4 1.5 液晶的基本物理特性•••6 1.5.1 液晶分子排列的秩序參數•••7 1.5.2 液晶的雙折射性和光電物性•••9 1.5.3 液晶的彈性連續理論•••11 1.6 液晶顯示原理•••12 1.7 液晶分子排列方向影響顯示方式•••13 1.8 傳統配向製程介紹•••15 1.8.1 各種液晶配向方式簡介•••15 1.9 液晶顯示器的發展與應用•••23 1.10 參考文獻•••23 第二章 研究背景與實驗•••26 2.1 文獻回顧•••26 2.2 研究動機與目的•••27 2.3 實驗簡介•••28 2.3.1 實驗系統概述•••28 2.4 高分子基材所需具備的條件•••29 2.4.1 一般高分子分散性液晶的製備方式•••29 2.4.2 紫外光聚合反應機制•••30 2.5 垂直配向(Verticle Alignment, VA)模式原理•••33 2.5.1 VA模式元件的應用•••33 2.5.2 本研究採用此新穎光配向的原因•••35 2.6 參考文獻•••38 第三章 利用紫外光聚合方式製作擬PI之垂直配向模式液晶元件及其光電特性探討•••41 中文摘要•••42 Abstract•••43 3.1 前言•••44 3.2 實驗•••47 3.2.1 材料•••47 3.2.2 垂直配向模式(Vertical alignment, VA)原理•••48 3.2.3 液晶混合系統的製備•••49 3.2.4 程序細節•••50 3.3 結果與討論•••54 3.3.1 NLC2液晶混合系統的轉化率(Conversion percentage, CP)•••54 3.3.2 NLC2液晶混合系統之POM、SEM的配向膜表面微結構觀察及其液晶分子配向機制•••54 3.3.3 NLC2液晶混合系統的光電性質量測與分析•••57 3.3.4 不同碳鏈長度的烷基壓克力單體與液晶分子的相互作用關係及其光電特性研究•••61 3.4 結論•••64 3.5 參考文獻•••65 第四章 相分離之液晶/光硬化型壓克力單體混合系統的光電特性探討•••71 中文摘要•••72 Abstract•••73 4.1 前言•••74 4.2 實驗•••76 4.2.1 材料與液晶/光硬化單體混合系統的製備•••76 4.2.2 轉化率(Conversion Percentage, CP)以及NLC-B1和NLC-B2液晶混合系統的POM、SEM觀測•••78 4.2.3 NLC-B1和NLC-B2液晶混合系統的光電性質量測•••78 4.3 結果與討論•••81 4.3.1 NLC-B1和NLC-B2液晶混合系統的轉化率分析(Conversion percentage, CP)•••81 4.3.2 液晶元件的顯示情形以及VACOF表面微結構觀察•••82 4.3.3 VACOF試片的光電性質•••84 4.4 結論•••93 4.5 參考文獻•••94 第五章 以雙旋光中心層列A相液晶輔助光致垂直配向之負型液晶/光硬化壓克力預聚高分子混合系統的光電特性探討及其應用性評估(Part 1)•••98 中文摘要•••99 Abstract•••100 5.1 前言•••101 5.2 實驗•••104 5.2.1 材料與液晶混合系統簡介•••104 5.2.2 NLC與NLC-SmA*/photo-curable acrylic pre-polymer混合系統的製備•••105 5.2.3 光聚合誘導相分離(Photo-polymerization induced phase separation, PIPS)程序以及NLC與NSLC混合系統的UV硬化行為•••106 5.2.4 熱性質分析與觀測•••108 5.2.5 液晶混合系統的光電性質•••108 5.2.5.1 光穿透度(Transmittance, T)、閥電壓(Threshold voltage, Vth)、驅動電壓(Driving voltage, Von)以及飽和電壓(Saturation voltage, Vsat)•••108 5.2.5.2 反應時間(Response time)•••110 5.2.5.3 介電特性(Dielectric characteristics)•••112 5.3 結果與討論•••115 5.3.1 液晶混合系統的UV轉化率(Conversion percentage, CP)•••115 5.3.2 液晶混合系統的相轉移(Phase-transition)行為以及偏光顯微鏡(Polarized Optical Microscopy, POM)觀察•••115 5.3.3 NSLC液晶混合系統的光配向機制(Photo-alignment mechanism)•••123 5.3.4 液晶混合系統的光電性質研究•••123 5.3.5 液晶混合系統的初步介電行為研究•••127 5.3.5.1 液晶混合系統的介電常數,介電損耗與溫度的關係•••127 5.3.5.2 液晶混合系統的介電常數,介電損耗與頻率的關係•••130 5.3.5.3 液晶混合系統的Cole-Cole圖•••133 5.4 結論•••134 5.5 參考文獻•••135 第六章 以雙旋光中心層列A相液晶輔助光致垂直配向之負型液晶/光硬化壓克力預聚高分子混合系統的光電特性探討及其應用性評估(Part 2)•••142 6.1 前言•••43 6.2 實驗•••143 6.2.1 NSLC-2與NSLC-3混合系統•••143 6.3 結果與討論•••144 6.3.1 NSLC-2與NSLC-3的相轉移(Phase-transition)行為以及偏光顯微鏡(Polarized Optical Microscopy, POM)觀察•••144 6.3.2 NSLC-2與NSLC-3混合系統的光電性質探討•••145 6.3.2.1 NSLC-2與NSLC-3混合系統的光穿透度(Transmittance)•••145 6.3.2.2 NSLC-2與NSLC-3混合系統的總反應時間(Total response time)•••147 6.3.2.3 NSLC-2與NSLC-3混合系統的介電行為量測•••147 6.5 結論•••153 6.6 參考文獻•••154 第七章 總結論•••155 第八章 個人簡歷•••161 第九章 投稿期刊首頁•••168 圖目錄 第一章 圖1-1 液晶性物質的溫度變化所造成的狀態轉變示意圖•••2 圖1-2 長棒狀液晶分子的化學結構示意圖•••2 圖1-3 各種液晶相之分子排列情形示意圖•••4 圖1-4 液晶之各種分類•••5 圖1-5 液晶高分子之分子構造分類圖•••6 圖1-6 向列型(Nematic)液晶之物理性質異方性•••7 圖1-7 液晶分子之定向方向α與主軸方向(Director, n)之空間位置(液晶分子)•••8 圖1-8 典型的秩序參數S與溫度的變化關係;TC為液晶相至液相(Isotropic)轉變的溫度•••8 圖1-9 正單軸性液晶的折射率橢圓球(光軸為液晶分子導向)•••9 圖1-10 單軸性液晶的折射率異方性•••10 圖1-11 電場外加所造成之液晶分子排列的變化情形(Freedericksz遷移)•••11 圖1-12 液晶的三種基本變化示意圖•••12 圖1-13 TN型液晶顯示器之顯示原理(圖片來源:台大物理所 趙治宇教授授課講義)•••13 圖1-14 液晶分子的排列方式示意圖•••14 圖1-15 預傾角存在的必要性示意圖•••14 圖1-16 傳統摩擦配向示意圖•••15 圖1-17 配向刷磨作用產生之PI構形變化示意圖•••16 圖1-18 經配向刷磨作用後使液晶分子產生排列示意圖•••17 圖1-19 斜向蒸著法示意圖•••18 圖1-20 光配向原理示意圖•••19 圖1-21 使用Langmuir-Blodget(LB)膜做為液晶分子配向層的示意圖•••20 圖1-22 微影製程和曝光系統(資料來源:工研院材料所)•••22 第二章 圖2-1 經由UV光照射後所形成的垂直配向共聚薄膜(VACOF)示意圖•••28 圖2-2 Photo-initiated的自由基聚合反應程序示意圖•••31 圖2-3 (a)本實驗系統之一的自由基聚合反應程序以及(b)為液晶分子垂直配向共聚薄膜(VACOF)示意圖•••32 圖2-4 經垂直配向後之液晶分子的光電效應原理示意圖•••33 圖2-5 (a)未施加電場與(b)施加電場時所呈現的Single domain顯示狀態示意圖•••34 圖2-6 MVA動作原理示意圖•••5 圖2-7 傳統Cell process之TFT-LCD面板製作流程示意圖•••36 圖2-8 新式TFT-LCD面板製作流程示意圖•••37 第三章 Figure 3-1 The VACOF were formed after UV light irradiation. (a) The copolymerization occurred after the acrylic monomers A, B and the photoinitiator had been irradiated by UV light. (b) The double layers VACOF film emerged after phase separation was completed.•••45 Figure 3-2 Chemical structures of the acrylic monomers A (AC4, AC10, AC14), B and photoinitiator.•••47 Figure 3-3 Principles of the electro-optical effects after photo-alignment. (a) Dark sate before applied voltage. (b) Bright state after applied voltage.•••48 Figure 3-4 Setup for observation of the LC cell with POM.•••51 Figure 3-5 Setup for measurement of the transmittance and contrast ratio of the LC cell.•••52 Figure 3-6 Setup for measurement of the response time of the LC cell.•••53 Figure 3-7 (a) Absorption spectrum of the NLC2 mixture system with UV light irradiation time. (b) Conversion percentage (CP) of the absorption of the NLC2 mixture system with UV light irradiation time.•••54 Figure 3-8 POM observation of the LC cell (with acrylic monomer B content of 0.30 wt%). (a) Uniformly dark state before applied voltage (Inset: conoscopic pattern) and (b) Single-domain uniformly bright state after applied voltage.•••55 Figure 3-9 Vertical alignment mechanism for LC molecules.•••56 Figure 3-10 SEM pictures of the VACOF (with acrylic monomer B content of 0.30 wt%) (a) The upper and (b) the lower VA copolymer films on the surface of the ITOglass.•••57 Figure 3-11 The results of the transmittance and contrast ratio measurements of the LC cells. (a) transmittance vs. applied voltage, and (b) contrast ratio vs. acrylic monomer B content.•••58 Figure 3-12 Definition of the rise time and fall time of the LC molecules.•••60 Figure 3-13 The measurement of the response time with the acrylic monomer B content at 0.30 wt%.•••61 Figure 3-14 POM of the 3 LC mixture systems: NLC1, NLC2 and NLC3. (a) AC4, (b) AC10, (c) AC4 display state before and after applied voltage.•••62 Figure 3-15 The results of the transmittance and contrast ratio measurements of the 3 LC mixture systems: NLC1, NLC2 and NLC3. (a) transmittance vs. applied voltage, and (b) contrast ratio vs. acrylic monomer B content (inset).•••63 第四章 Figure 4-1 Double layer vertical alignment composite film (VACOF) formed via the photo-alignment process.•••75 Figure 4-2 Chemical structures of the components used for the formation of the vertical alignment composite film.•••77 Figure 4-3 Principles of the electro-optical effects after non-contact photo-alignment process. (a) Dark state before applied voltage. (b) Bright state after applied voltage.•••79 Figure 4-4 Variations in the UV absorption values and relationship between conversion percentage for (a) NLC-B1 (B1: 0.30 wt%) and (b) NLC-B2 (B2: 0.30 wt%) mixture systems with different UV light exposure time.•••81 Figure 4-5 POM observations for 2 LC mixture systems with different cell thicknesses (2 μm, 4 μm, and 6 μm). Display state for (a) - (c) NLC-B1, and (d) - (f) NLC-B2 before and after application of voltage.•••83 Figure 4-6 SEM pictures of the polymer layers formed in VACOF cells (NLC-B1 and NLC-B2 mixture system). (a) The upper and (b) the lower VA copolymer films on the surface of the ITO glass substrate.•••85 Figure 4-7 Measured transmittance vs. applied voltage curve plots for (a) NLC-B1 and (b) NLC-B2 mixture cells with different cell thicknesses (2 μm, 4 μm, and 6 μm).•••86 Figure 4-8 Variations of the threshold voltage and driving voltage with increasing content of main chain type biphenol acrylic monomer for (a) - (c) NLC-B1 and (d) - (f) NLC-B2 mixture cells with different cell thicknesses (2 μm, 4 μm, and 6 μm).•••89 Figure 4-9 Measurement results of the response time for the (a) NLC-B1 and (b) NLC-B2 mixture system (cell thickness: 4 μm) with the acrylic monomer B content at 0.30 wt% and 0.32 wt%, respectively.•••90 Figure 4-10 Response time measurements for (a) NLC-B1 and (b) NLC-B2 mixture systems with different cell thickness.•••92 第五章 Figure 5-1 Special configurations of the (a) TGBA* phase and (b) TGBC* phase picture. (The presence of a grain boundary allows the rotation of the layer normal by a finite angle ΔΦ. Blocks of SmA layers of spacing d are separated by regularly spaced twist grain boundaries separated by a distance lb. The distance between screw dislocations within a grain boundary is ld.)•••103 Figure 5-2 The chemical structure and phase transition temperature variation of the pure two chiral Smectic A phase liquid crystal material.•••104 Figure 5-3 The chemical structure of the photo-curable acrylic pre-polymer and photo-initiator LC mixture system.•••105 Figure 5-4 The NLC and NSLC mixture cells after UV light irradiation, with the formation of the double layers VACOF due to phase separation.•••107 Figure 5-5 Setup for observing the liquid crystalline texture of the LC mixture cells with POM.•••109 Figure 5-6 Setup for measuring the transmittance, threshold voltage (Vth), driving voltage (Von) and saturation voltage (Vsat) of the LC mixture cells.•••110 Figure 5-7 Setup for observing the display condition of the LC mixture cells with POM.•••111 Figure 5-8 Setup for measuring the response time of the LC mixture cells.•••111 Figure 5-9 Definition of the rise time and fall time of the LC molecules.•••112 Figure 5-10 Setup for measuring the dielectric behaviors of the LC mixture cells.•••113 Figure 5-11 Chart of the capacitor circuit (R.C. circuit).•••114 Figure 5-12 Variations in the UV absorption values ((a) and (b)) and UV CPs ((c) and (d)) of the NLC and NSLC mixture systems under UV light irradiation during the 0-30 minutes interval respectively.•••116 Figure 5-13 DSC traces obtained during two successive heating and cooling cycles for pure NLC and NLC mixtures ((a) and (b)) and pure SmA* and NSLC mixtures ((c) and (d)) respectively (Inset: Optical texture of all the mixtures during second cooling, from POM observations and micro-photograph shots (with LC cell thickness d = 4 μm)).•••118-121 Figure 5-14 The transmittance vs. applied voltage relationship of the (a) NLC and (b) NSLC mixture systems (Inset: POM observations of the display conditions before and after a voltage was applied to the LC mixture cells).•••124 Figure 5-15 Measurements of the response time for the (a) NLC and (b) NSLC mixture systems (with cell thickness d = 4 μm).•••126 Figure 5-16 Relationships between the dielectric constant and temperature ((a) and (b)) as well as dielectric loss and temperature ((c) and (d)) before and after a voltage was applied to the NLC mixture system.•••128 Figure 5-17 Relationships between the dielectric constant and temperature ((a) and (b)) as well as dielectric loss and temperature ((c) and (d)) before and after a voltage was applied to the NSLC mixture system.•••129 Figure 5-18 Typical experimental dielectric spectra (relative dielectric constant and loss) in the frequency range 50 Hz-1 MHz acquired in the (a) NLC and (b) NSLC mixture systems (0.3 V, V<Vth) at room temperature (~30℃).•••131 Figure 5-19 Typical experimental dielectric spectra (relative dielectric constant and loss) in the frequency range 50 Hz-1 MHz acquired in the (a) NLC and (b) NSLC mixture systems (6 V, V = Vsat) at room temperature (~30℃).•••132 Figure 5-20 Cole-Cole plots of the NLC and NSLC mixture systems at room temperature (~30℃).•••133 第六章 Figure 6-1 The twist grain boundary phase (TGBAX* phase) micro-photograph shots (with LC cell thickness d = 4 μm) of the (a) NSLC-1, (b) NSLC-2 and (c) NSLC-3 mixture systems.•••144 Figure 6-2 The transmittance vs. applied voltage relationship of the (a) NSLC-2 and (b) NSLC-3 mixture systems.•••146 Figure 6-3 Relationships between the dielectric constant and temperature ((a) and (b)) as well as dielectric loss and temperature ((c) and (d)) before and after a voltage was applied to the NSLC-2 mixture system.•••148 Figure 6-4 Relationships between the dielectric constant and temperature ((a) and (b)) as well as dielectric loss and temperature ((c) and (d)) before and after a voltage was applied to the NSLC-3 mixture system.•••149 Figure 6-5 Typical experimental dielectric spectra (relative dielectric constant and loss) in the frequency range 50 Hz-1 MHz acquired in the (a) NSLC-2 and (b) NSLC-3 mixture systems (0.3 V, V<Vth) at room temperature (~30℃).•••150 Figure 6-6 Typical experimental dielectric spectra (relative dielectric constant and loss) in the frequency range 50 Hz-1 MHz acquired in the (a) NSLC-2 and (b) NSLC-3 mixture systems (6 V, V = Vsat) at room temperature (~30℃).•••151 Figure 6-7 Cole-Cole plots of the NSLC-2 and NSLC-3 mixture systems at room temperature (~30℃).•••152 第七章 Figure 7-1 The chemical structure and phase transition temperature variation of the pure chiral Smectic A phase liquid crystal material.•••158 Figure 7-2 The NLC-B1, NLC-B2 and NSLC mixture cells after UV light irradiation, with the formation of the double layers VACOF due to phase separation.•••159 表目錄 第三章 Table 3-1 Components and ratios of the NLC2 mixture solution•••49 Table 3-2 Components and ratios of each LC mixture system•••49 Table 3-3 Experiment settings and parameters•••50 Table 3-4 Threshold voltage, driving voltage and contrast ratio of the NLC2•••59 Table 3-5 Response time measurements for the NLC2•••60 Table 3-6 Threshold voltage, driving voltage and contrast ratio of the 3 LC mixture systems: NLC1, NLC2 and NLC3•••62 Table 3-7 Response time measurements for the 3 LC mixture systems: NLC1, NLC2 and NLC3•••63 第四章 Table 4-1 Component and weight percentage ratio of the NLC-B1 and NLC-B2 mixture solutions•••76 Table 4-2 Measurement results of the threshold voltage (Vth), driving voltage (Von) and contrast ratio for NLC-B1 andNLC-B2 mixture systems with different cell thicknesses (2 μm, 4 μm, and 6 μm)•••87 Table 4-3 Measurement results for response time, i.e. rise time (τon) and fall time (τoff) for NLC-B1 and NLC-B2 mixture systems with different cell thicknesses (2 μm, 4 μm, and 6 μm)•••91 第五章 Table 5-1 Component and weight percentage ratios of each LC mixture system•••106 Table 5-2 Phase-transition temperature (℃) from the DSC thermograms and enthalpies (Jg-1) of transitions for all compounds•••122 Table 5-3 Threshold voltage (Vth), driving voltage (Von), saturation voltage (Vsat) and contrast ratio (CR) of the LC mixture systems•••125 Table 5-4 Total response time measurements for the LC mixture systems•••127 第六章 Table 6-1 Phase-transition temperature (℃) from the DSC thermograms and enthalpies (Jg-1) of transitions for NSLC-2 and NSLC-3 mixture systems•••145 Table 6-2 Threshold voltage (Vth), driving voltage (Von), saturation voltage (Vsat) and contrast ratio (CR) of the NSLC-2 and NSLC-3 mixture systems•••147 Table 6-3 Total response time measurements for the LC mixture systems•••147

    第一章 參考文獻
    1. 孫政民、王新久譯,液晶物理學,上海翻譯出版公司 (1990)。
    2. 劉瑞祥譯,液晶之基礎與應用,國立編譯館出版 (1996)。
    3. 周其鳳、王新久著,液晶高分子,科學出版社 (1999)。
    4. 賴耿陽編著,液晶製法與應用,復漢出版社 (2001)。
    5. 楊怡寬、郭蘭生、鄭殷立編譯,液晶化學及物理入門,偉明圖書有限公司 (2001)。
    6. 國立台灣科技大學,高分子工程研究所,碩士學位論文,題目:主鏈熱向型液晶性聚醯亞胺/二氧化矽奈米複合材料的合成及其物性、電氣性質的探討,研究生:何宗育,指導教授:李俊毅 (2005)。
    7. F. Reinitzer, Monatshefte, Monatshefte fur Chemie 9, 421 (1888).
    8. F. Reinitzer, Monatshefte, Ann. Physik. 27, 213 (1908).
    9. O. Lehmann, Z. Physik. Chem. 4, 462 (1889).
    10. O. Lehmann, Z. Ann. Physik. 25, 852 (1908).
    11. 何曼君、董西峽、陳維孝編著,高分子物理,復旦大學出版社 (1990)。
    12. 劉鳳岐、湯心頤編著,高分子物理,高等教育出版社 (1995)。
    13. J. C. Dubois, Ann. Physique 3, 535 (1978).
    14. J. Billard, J. C. Dubois, N. H. Tinh and A. Zann, Nouveau J. Chimie 2, 535 (1978).
    15. 李建輝,材料與社會 69, 67 (1992)。
    16. G. W. Gray, Thermotropic Liquid Crystals, John Wiley & Sons, New York, (1987).
    17. I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals, World Scientific, Singapore, (1993).
    18. P. J. Collings, Michael Hird, Introduction to Liquid Crystals Chemistry and Physics, Taylor & Francis, London, (1996).
    19. P. J. Collings, Liquid Crystals: Nature's Delicate Phase of Matter, Princeton University Press, New Jersey, (1990).
    20. C. W. Oseen, Trans. Faraday Soc. 29, 883 (1933).
    21. H. Zocher, Trans. Faraday Soc. 29, 945 (1933).
    22. F. C. Frank, Disc. Faraday Soc. 25, 19 (1958).
    23. M. Schadt and W. Helfrich, Appl. Phys. Lett. 18, 127 (1971).
    24. T. J. Scheffer and Nehring, Appl. Phys. Lett. 45, 1021 (1984).
    25. G. H. Heilmeier and L. A. Zanoni, Appl. Phys. Lett. 13, 91 (1968).
    26. J. J. Wysoki, A. Adams and W. Haas, Phys. Rev. Lett. 20, 1024 (1968).
    27. N. A. Clark and S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
    28. M. F. Schiekel and K. Frhrenschon, Appl. Phys. Lett. 19, 391 (1971).
    29. M. Hareng, G. Assouline and E. Leiba, Electron. Lett. 7, 699 (1971).
    30. M. Hareng, G. Assouline and E. Leiba, Proc. IEEE 60, 913 (1972).
    31. P. Chatelaine, Bull. Soc. Franc. Crist. 66, 105 (1943).
    32. U. Wolf, W. Greubel and H. Kruger, Mol. Cryst. Liq. Cryst. 23, 187 (1977).
    33. T. Sugiyama, S. Kuniyasu, D. S. Seo, H. Fukuro and S. Kobayashi, Jpn. J. Appl. Phys. 29, 2045 (1990).
    34. J. L. Janning, Appl. Phys. Lett. 21, 173 (1972).
    35. W. Urbach, M. Boix and E. Guyon, Appl. Phys. Lett. 25, 479 (1974).
    36. T. Uchida, M. Ohgawara and M. Wada, Jpn. J. Appl. Phys. 19, 2127 (1980).
    37. M. Schadt, Jpn. J. Appl. Phys. 31, 2155 (1992).
    38. Y. Wang, C. Xu, A. Kanazawa, T. Shiono and T. Ikeda, J. Appl. Phys. 84, 181 (1998).
    39. Y. Wang, C. Xu, A. Kanazawa, T. Shiono and T. Ikeda, J. Appl. Phys. 84, 4573 (1998).
    40. J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman and J. L. Speidell, Science 292, 2299 (2001).
    41. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, A. S. Lien, A. Callegari, G. Hougham, D. N. Lang, S. P. Andry, R. John, H. K. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stohr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, Nature 411, 56 (2001).
    42. X. M. Lu, Q. H. Lu, Z. K. Zhu, J. Yin and Z. G. Wang, Chem. Phys. Lett. 377, 433 (2003).
    43. J. M. Geary, J. W. Goodby, A. R. Kmetz and J. S. Patel, J. Appl. Phys. 62, 4100 (1987).
    44. V. K. Gupta and N. L. Abbott, Langmuir 12, 2587 (1996).
    45. V. K. Gupta and N. L. Abbott, Phys. Rev. E 54, R4540 (1996).
    46. A. Ulman, An introduction to ultrathin organic films from Langmuir-Blodgett to Self-Assembl, Academic Press, Inc., San Diego, (1991).
    47. 李金揚,劉品均,機械工業雜誌 270, 40 (2005)。
    48. O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu and O. D. Lavrentovich, Liq. Cryst. 31, 859 (2004).
    49. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Science 272, 85 (1996).
    50. S. Y. Chou, C. Keimei and J. Gu, Nature 417, 835 (2002).
    51. C. Marzolin, S. P. Smith, M. Prentiss, and G. M. Whitesides, Adv. Mater. 10, 571 (1998).
    52. D. R. Chiou and L. J. Chen, Langmuir 22, 9403 (2006).
    53. D. R. Chiou, K. Y. Yeh and L. J. Chen, Appl. Phys. Lett. 88, 133123 (2006).
    54. 國立台灣大學,化學工程學研究所,博士學位論文,題目:向列型液晶4-n-penyl-4’-cyanobiphenyl在具微溝槽結構的表面上之排列行為研究,研究生:邱大任,指導教授:陳立仁 (2006)。
    55. K. Ha and J. L. West, Liq. Cryst. 31, 753 (2004).
    56. N. Y. Ha, Y. K. Woo, B. Park and J. W. Wu, Adv. Mater. 16, 1725 (2004).
    57. 紀國鐘,鄭晃忠主編,液晶顯示器技術手冊,台灣電子材料元件協會出版 (2002)。
    58. 徐敘瑢著,光電材料與顯示技術,五南圖書出版公司 (2004)。
    59. 顧鴻壽編著,光電液晶平面顯示器技術基礎及應用,新文京開發出版有限公司 (2004)。
    60. 陳建銘編譯,液晶顯示器技術入門,全華科技圖書股份有限公司 (2005)。
    61. 田民波著,平面顯示器之技術發展,五南圖書出版公司 (2008)。
    62. 田民波著,TFT液晶顯示原理與技術,五南圖書出版公司 (2008)。
    63. 游孟潔編譯,TFT彩色液晶顯示器,全華科技圖書股份有限公司 (2008)。
    64. G. H. Heilmeier, L. A. Zanoni and L. A. Barton, Proc. IEEE 56,1162 (1968).
    65. A. Kubono, Y. Z. Kyokane, Y. Kasajima, R. Akiyama and K. Tanaka, J. Appl. Phys. 89, 3554 (2001).
    第二章 參考文獻
    1. 陳品誠,工業材料雜誌 190, 133 (2002)。
    2. J. Van Haaren, Nature 411, 29 (2001).
    3. 李政道,工業材料雜誌 188, 149 (2002)。
    4. 劉品均等,工業材料雜誌 210, 154 (2004)。
    5. 陳嘉明等,工業材料雜誌 210, 202 (2004)。
    6. 吳仲文,工業材料雜誌 210, 207 (2004)。
    7. 李文欽等,工業材料雜誌 199, 153 (2003)。
    8. W. M. Gibbons et al., Nature 351, 49 (1991).
    9. P. J. Shannon, and W. M. Gibbons, Nature 368, 532 (1994).
    10. M. Schadt, H. Seiberle and A. Schuster, Nature 381, 212 (1996).
    11. J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman and J. L. Speidell, Science 292, 2299 (2001).
    12. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, A. S. Lien, A. Callegari, G. Hougham, D. N. Lang, S. P. Andry, R. John, H. K. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stohr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, Nature 411, 56 (2001).
    13. X. M. Lu, Q. H. Lu, Z. K. Zhu, J. Yin and Z. G. Wang, Chem. Phys. Lett. 377, 433 (2003).
    14. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Science 272, 85 (1996).
    15. S. Y. Chou, C. Keimei and J. Gu, Nature 417, 835 (2002).
    16. D. R. Chiou and L. J. Chen, Langmuir 22, 9403 (2006).
    17. D. R. Chiou, K. Y. Yeh and L. J. Chen, Appl. Phys. Lett. 88, 133123 (2006).
    18. 國立台灣大學,化學工程學研究所,博士學位論文,題目:向列型液晶4-n-penyl-4’-cyanobiphenyl在具微溝槽結構的表面上之排列行為研究,研究生:邱大任,指導教授:陳立仁 (2006).
    19. 陳守仁等,機械工業雜誌 267, 36 (2005)。
    20. V. Vorflusev and S. Kumar, Science 283, 1903 (1999).
    21. V. Vorflusev, J. H. Kim and S. Kumar, Pramana-J. Phys. 53, 121 (1999).
    22. T. Qian et al., Phys. Rev. E 61, 4007 (2000).
    23. J. H. Kim, V. Vorflusev and S. Kumar, Displays 25, 207 (2004).
    24. Q. Wang et al., Jpn. J. Appl. Phys. 44, 3115 (2005).
    25. Q. Wang and S. Kumr, Appl. Phys. Lett. 86, 071119 (2005).
    26. C. Y. Ho and J. Y. Lee, Liq. Cryst. 37, 997 (2010).
    27. C. Y. Ho, P. S. Tsai, H. G. Lin, F. C. Li, F. H. Lin and J. Y. Lee, Polym. Adv. Technol. (to be published) (2010).
    28. C. T. Liao, M. H. Jiang, N. C. Wu, Z. L. Wu, S. F. Zou and J.Y. Lee, J. Chin. Inst. Eng. (to be published) (2010).
    29. M. S. Spector, P. A. Heiney, J. Naciri, B. T. Weslowski, D. B. Holt and R. Shashidhar, Phys. Rev. E 61 (2000) 1579.
    30. K. D. Have, A. Dahlgren, P. Rudquist, J. P. F. Lagerwall, G. Andersson, M. Matuszczyk, S. T. Lagerwall, R. Dabrowski and W. Drzewinski, Ferroelectrics 244 (2000) 415.
    31. C. Y. Ho and J. Y. Lee, Liq. Cryst. (to be published) (2010).
    32. N. A. Vaz, G. W. Smith and P. S. Drzaic, J. Appl. Phys. 60, 2142 (1986).
    33. J. W. Doane, N. A. Vaz, B. G. Wu and S. Zumer, Appl. Phys. Lett. 48, 269 (1986).
    34. N. A. Vaz, G. W. Smith and G. P. Montgomery, Jr., Mol. Cryst. Liq. Cryst. 146, 17 (1987).
    35. J. L. West, Mol. Cryst. Liq. Cryst. 157, 427 (1988).
    36. P. S. Drzaic, Liquid crystal dispersions, World Scientific, Singapore, (1995).
    37. W. Greubel, Appl. Phys. Lett. 25, 5 (1974).
    38. D. K. Yang and Z. J. Lu, SID Dig. Tech. Pap. 26, 351 (1995).
    39. G. Crawford and S. Zumer, Liquid crystals in complex geometries, Taylor & Francis, London, (1996).
    40. S. Kang, S. Sprunt and L. C. Chien, Appl. Phys. Lett. 76, 3516 (2000).
    41. S. N. Lee, S. Sprunt and L. C. Chien, Liq. Cryst. 28, 637 (2001).
    42. C. Binet, M. Mitov and M. Mauzac, J. Appl. Phys. 90, 1730 (2001).
    43. V. Laux, F. Roussel and J. M. Buisine, Ferroelectrics 277, 75 (2002).
    44. E. Nouvet and M. Mitov, Mol. Cryst. Liq. Cryst. 413, 515 (2004).
    45. M. Mitov, E. Nouvet and N. Dessaud, Eur. Phys. J. E 15, 413 (2004).
    46. D. K. Kim and B. K. Kim, Liq. Cryst. 33, 469 (2006).
    47. C. Y. Huang, Y. S. Chih and S. W. Ke, Appl. Phys. B 86, 123 (2007).
    48. S. Y. Lu and L. C. Chien, Appl. Phys. Lett. 91, 131119 (2007).
    49. C. J. Tian and C. Y. Huang, Jpn . J. Appl. Phys. 47, 8515 (2008).
    50. Z. Ge, S. Gauza, M. Jiao, H. Xianyu and S. T. Wu, Appl. Phys. Lett. 94, 101104 (2009).
    51. H. G. Craighead, J. Cheng and S. Hackwood, Appl. Phys. Lett 40, 22 (1982).
    52. J. L. Fergason, SID Int. Symp. Digest of Paper 16, 68 (1985).
    53. P. S. Paul, J. Appl. Phys. 60, 2142 (1986).
    54. T. Kajiyama, Y. Nagata, E. Maemura and M. Takayanagi, Chem. Lett. 8, 679 (1979).
    55. G. W. Smith and N. A. Vaz, Liq. Cryst. 3, 543 (1988).
    56. J. D. Margerum, A. M. Lackner, E. Ramos, K. C. Lim and W. H. Smith, Jr., Liq. Cryst. 5, 1477 (1989).
    57. A. Miyamoto, H. Kikuchi, Y. Morimura and T. Kajiyama, New Polym. Mater. 2, 27 (1990).
    58. N. A. Vaz, G. W. Smith and G. P. Montgomery, SPIE Liq. Cryst. Displays and Applic 70, 135 (1990).
    59. Jain S. C., Rout D. K. and Chandra S., Mol. Cryst. Liq. Cryst. 188, 251 (1990).
    60. R. Stannarius, G. P. Crawford, L. C. Chien and J. W. Doane, J. Appl. Phys. 70, 135 (1991).
    61. W. C. Chiang, G. H. Hsiue, J. H. Liu, J. J. Liang and C. C. Chen, SPIE Display Tech. 1815, 118 (1992).
    62. E. Shimada and T. Uchida, Jpn. J. Appl. Phys. 31, 352 (1992).
    63. W. Ahn, C. Y. Kim and S. C. Kim, Macromolecules 25, 5002 (1992).
    64. C. H. Noh, J. E. Jung, J. Y. Kim, D. S. Sakong and K. S. Choi, Mol. Cryst. Liq. Cryst. 237, 299 (1993).
    65. H. Takatsu, K. Takeuchi and Y. Umezu, Mol. Cryst. Liq. Cryst. 225, 81 (1993).
    66. G. W. Smith, Mol. Cryst. Liq. Cryst. 241, 77 (1994).
    67. S. J. Klosowicz and J. Smua, Mol. Cryst. Liq. Cryst. 249, 163 (1994).
    68. C. Serbutoviez, J. G. Kloosterbore, H. M. J. Boots and F. J. Touwslager, Macromolecules 29, 7690 (1996).
    69. 潘才元主編,高分子化學,中國科學技術大學出版社 (1997)。
    70. 余木火主編,高分子化學 (第二版),中國紡織出版社 (1999)。
    71. 王德海、江欞編著,紫外光固化材料-理論與應用,科學出版社 (2001)。
    72. 薛敬和編譯,高分子設計 (第3版),國家圖書館 (2007)。
    73. J. P. Fouassier, Photoinitiation, Photopolymerization, and Photocuring: Fundamentals and Application, Hanser publishers, Munich Vienna New York (1995).
    74. 劉瑞祥譯,液晶之基礎與應用,國立編譯館出版 (1996)。
    75. 謝葆如,工業材料雜誌 195, 133 (2003)。
    第三章 參考文獻
    1. J. V. Haaren, Nature 411, 29 (2001).
    2. P. Chatelaine, Bull. Soc. Franc. Crist. 66, 105. (1943).
    3. D. W. Berremam, Phys. Rev. Lett. 28, 1683 (1972).
    4. D. W. Berreman, Mol. Cryst. Liq. Cryst. 23, 215 (1973).
    5. U. Wolf, W. Greubel, and H. Kruger, Mol. Cryst. Liq. Cryst. 23, 187 (1977).
    6. J. Cheng and G. D. Boyd, Appl. Phys. Lett. 35, 444 (1979).
    7. N. A. Clark and S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
    8. M. Nakamura, J. Appl. Phys. 52, 4561 (1981).
    9. H. Aoyama, Y. Yamazaki, N. Matsuura, H. Mada, and S. Kobayashi, Mol. Cryst. Liq. Cryst. 72, 217 (1981).
    10. J. A. Castellano, Mol. Cryst. Liq. Cryst. 94, 33 (1983).
    11. M. Becker, E., R. A. Kilian, B. B. Kasmowski, and D. A. Mlysnski, Mol. Cryst. Liq. Cryst. 132, 167 (1986).
    12. J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, J. Appl. Phys. 62, 4100 (1987).
    13. K. Nakajima, H. Wakemoto, S. Sato, F. Yokotani, S. Ishihara, and Y. Matsuo, Mol. Cryst. Liq. Cryst. 180B, 223 (1990).
    14. T. Sugiyama, S. Kuniyasu, D. S. Seo, H. Fukuro, and S. Kobayashi, Jpn. J. Appl. Phys. 29, 2045 (1990).
    15. D. S. Seo, K. Muroi, and S. Kobayashi, Mol. Cryst. Liq. Cryst. 213, 223 (1992).
    16. H. Mada and T. Sonoda, Jpn. J. Appl. Phys. 32, L1245 (1993).
    17. T. Ito, K. Nakanishi, M. Nishikawa, Y. Yokoyama, and Y. Takeuchi, J. Poly. 27, 240 (1995).
    18. M. F. Toney, T. P. Russell, J. A. Logan, H. Kikuchi, J. M. Sands, and S. K. Kumar, Nature 374, 709 (1995).
    19. H. Kihuchi, J. A. Logan, and D. Y. Yoon, J. Appl. Phys. 79, 6811 (1996).
    20. A. J. Pidduck, G. P. Bryan Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, J. Vac. Sci. Technol. A 14, 1723 (1996).
    21. K. W. Lee, S. H. Paek, A. Lien, C. J. Durning, and H. Fukuro, Macromolec. 29, 8894 (1996).
    22. K. W. Lee, A. Lien, J. H. Stathis, and S. H. Paek, Jpn. J. Appl. Phys. 36, 3591 (1997).
    23. S. H .Paek, C. J. Durning, K. W. Lee, and A. Lien, J. Appl. Phys. 83, 1270 (1998).
    24. D. S. Seo, J. Kor. Phys.Soc. 43, 359 (1999).
    25. J. J. Ge, C. Y. Li, G. Xue, I. K. Mann, D. Zhang, S. Y. Wang, F. W. Harris, S. Z. D. Cheng, S. C. Hong, X. Zhuang, and Y. R. Shen, J. Am. Chem. Soc. 123, 5678 (2001).
    26. G. P. Sinha, B. Wen, and C. Rosenblatt, Appl. Phys. Lett. 79, 2543 (2001).
    27. J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, Science 292, 2299 (2001).
    28. B. F. Macdonald, W. Zheng, and R. J. Cole, J. Appl. Phys. 93, 4442 (2003).
    29. M. Behdani, H. S. Keshmiri, S. Soria, A. M. Bader, J. Ihlemann, G. Marowsky, and Th. Rasing, Appl. Phys. Lett. 82, 2553 (2003).
    30. G. J. Lee, J. J. Lee, G. Lee, J. S. Kim, U. J. Hwang, C. H. Oh, S. H. Song, P. S. Kim, and Y. P. Lee, J. Kor. Phys. Soc. 45, 71 (2004).
    31. S. Kumar, J. H. Kim, and Y. Shi, Phys. Rev. Lett. 94, 077803 (2005).
    32. P. L. Egerton, E. Pitts and A. Reister, Macromolec. 14, 95 (1981).
    33. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, Langmuir 4, 1214 (1988).
    34. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, Nature 351, 49 (1991).
    35. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinovl Switzerl, Jpn. J. Appl. Phys. 31, 2155 (1992).
    36. M. Nishikawa, Y. Yokoyama, N. Bessho, D. S. Seo, Y. Iimura, and S. Kobayashi, Jpn. J. Appl. Phys. 33, L810 (1994).
    37. P. J. Shannon and W. M. Gibbons, Nature 368, 532 (1994).
    38. K. Ichimura, Y. Akita, H. Akiyama, Y. Hayashi, and K. Kudo, Jpn. J. Appl. Phys. 35, L992 (1996).
    39. M. Schadt, H. Seiberle, and A. Schuster, Nature 381, 212 (1996).
    40. Y. Wang, C. Xu, A. Kanazawa, T. Shiono, and T. Ikeda, J. Appl. Phys. 84, 181 (1998).
    41. Y. Wang, C. Xu, A. Kanazawa, T. Shiono, and T. Ikeda, J. Appl. Phys. 84, 4573 (1998).
    42. Y. Wang, A. Kanazawa, T. Shiono, and T. Ikeda, Appl. Phys. Lett. 72, 545 (1998).
    43. M. Nishikawa and J. L. West, Jpn. J. Appl. Phys. Part 1 38, 5183 (1999).
    44. K. J. Han, Y. Jung, H. H. Choi, H. K. Hwang, S. Lee, and S. Humjang, J. Appl. Phys. 86, 1854 (1999).
    45. K. Ichimura, Chem. Rev. 100,1847 (2000).
    46. A. E. A. Contoret, S. R. Farrar, P. O. Jackson, S. M. Khan, L. May, M. O’Neill, J. E. Nicholls, S. M. Kelly, and G. J. Richards, Adv. Mater. 12, 971 (2000).
    47. S. Perny, P. L. Barny, J Delaire, Liq. Cryst. 27, 349 (2000).
    48. Y. Wang, S. Xu, A. Kanazawa, T. Shiono, T. Ikeda, Y. Matsuki and U. Takeuchi, Liq. Cryst. 28, 473 (2001).
    49. Y. J. Fang, S. M. Chen, and R. Shashidhar, Langmuir 17, 1549 (2001).
    50. B. Lee and N. A. Clark, Science 291, 2576. (2001).
    51. D. H. Choi and Y. K. Cha, Bull. Kor. Chem. Soc. 23, 587 (2002).
    52. D. D. Huang, E. P. Pozhidaevl, V. G. Chigrinov, H. L. Cheung, Y. L. Ho, and H. S. Kwok, Displays 25, 21 (2004).
    53. J. H. Parka, I. C. Khoo, C. J. Yu, M. S. Jung, and S. D. Lee, Appl. Phys. Lett. 86, 021906 (2005).
    54. J. L. Janning, Appl. Phys. Lett. 21, 173 (1972).
    55. W. Urbach, M. Boix, and E. Guyon, Appl. Phys. Lett. 25, 479 (1974).
    56. T. Uchida, M. Ohgawara, and M. Wada, Jpn. J. Appl. Phys. 19, 2127 (1980).
    57. W. R. Heffner, D. W. Berreman, M. Sammon, and S. Meiboom, Appl. Phys. Lett. 36, 144 (1980).
    58. P. Chaudhari, J. A. Lacey, S. C. A. Lien, and J. L. Speidell, Jpn. J. Appl. Phys. 37, L55 (1998).
    59. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, A. S. Lien, A. Callegari, G. Hougham, D. N. Lang, S. P. Andry, R. John, H. K. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stohr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, Nature 411, 56 (2001).
    60. J. S. Gwag, K. H. Park, D. J. Kang, C. G. Jhun, H. Kim, S. J. Cho, T. H. Yoon, and J. C. Kim, Jpn. J. Appl. Phys. 42, L468 (2003).
    61. X. M. Lu, Q. H. Lu, Z. K. Zhu, J. Yin, and Z. G. Wang, Chem. Phys. Lett. 377, 433 (2003).
    62. F. C. Saunders, J. Staromlynska, G. W. Smith, and M. F. Daniel, Mol. Cryst. Liq. Cryst. 122, 297 (1985).
    63. R. K. Gupta, K.A. Suresh, R. Guo, and S. Kumar, Anal. Chim. Acta. 568, 109 (2006).
    64. S. R. Wasserman, Y. T. Tao, and G. M. Whitesides, Langmuir 5, 1074 (1989).
    65. V. K. Gupta and N. L. Abbott, Langmuir 12, 2587 (1996).
    66. V. K. Gupta and N. L. Abbott, Phys. Rev. E 54, R4540 (1996).
    67. W. J. Miller and N. L. Abbott, Langmuir 13, 7106 (1997).
    68. S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, J. Phys. Chem. B 101, 2143 (1997).
    69. C. G. Wu and J. Y. Chen, Chem. Mater. 9, 399 (1997).
    70. D. H. Chung, T. Fukuda, Y. Takanishi, K. Ishikawa, H. Matsuda, H. Takezoe, and M. A. Osipov, J. Appl. Phys. 92, 1841 (2002).
    71. K. Ha and J. L. West, Liq. Cryst. 31, 753 (2004).
    72. N. Y. Ha, Y. K. Woo, B. Park, and J. W. Wu, Adv. Mater. 16, 1725 (2004).
    73. V. V. Zhurin, H. R. Kaufman, and R. S. Robinson, Plasma Sources Sci. Technol. 8, R1 (1999).
    74. C. J. Newsome and M. O’Neill, J. Appl. Phys. 92, 1752 (2002).
    75. O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, and O. D. Lavrentovich, Liq. Cryst. 31, 859 (2004).
    76. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85 (1996).
    77. Y. Xia, and G. M. Whitesides, Angew. Chem. Int. Ed. 37, 551 (1998).
    78. C. Marzolin, S. P. Smith, M. Prentiss, and G. M. Whitesides, Adv. Mater. 10, 571 (1998).
    79. S. Y. Chou, C. Keimei, and J. Gu, Nature 417, 835 (2002).
    80. D. R. Chiou, K. Y. Yeh, and L. J. Chen, Appl. Phys. Lett. 88, 133123 (2006).
    81. D. R. Chiou and L. J. Chen, Langmuir 22, 9403 (2006).
    82. V. Vorflusev and S. Kumar, Science 283, 1903 (1999).
    83. V. Vorflusev, J. H. Kim, and S. Kumar, Pramana-J. Phys. 53 121 (1999).
    84. T. Qian, J. H. Kim, S. Kumar, and P. L. Taylor, Phys. Rev. E 61, 4007 (2000).
    85. I. Kim, J. H. Kim, D. Kang, D. M. Agra-Kooijman, and S. Kumar, J. Appl. Phys. 92, 7699 (2002).
    86. J. H. Kim and S. Kumar, Jpn. J. Appl. Phys. 43, 7050 (2004).
    87. J. H. Kim, V. Vorflusev, and S. Kumar, Displays 25, 207 (2004).
    88. Q. Wang and S. Kumar, Appl. Phys. Lett. 86, 071119 (2005).
    89. Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, and S. Kumar, Jpn. J. Appl. Phys. 44, 3115 (2005).
    90. J. H. Kim and S. Kumar, J. Lightwave Technol. 23, 628 (2005).
    91. Q. Wang, R. Guo, M. R. DAJ, S. W. Kang, and S. Kumar, Jpn. J. Appl. Phys. 46, 299 (2007).
    92. H. Choi, D. W. Kim, K. W. Rhie, M. P. Hong, S. T. Shin, S. Kumar, W. G. Jang, B. W. Lee, and K. H. Kim, Jpn. J. Appl. Phys. 47, 1008 (2008).
    93. H. G. Craighead, J. Cheng, and S. Hackwood, Appl. Phys. Lett. 40, 22 (1982).
    94. J. W. Doane, N. A. Vaz, B. G. Wu, and S. Zumer, Appl. Phys. Lett. 48, 269 (1986).
    95. P. S. Drzaic, J. Appl. Phys. 60, 2142 (1986).
    96. N. A. Vaz, G. W. Smith, and G. P. Montgomery Jr., Mol. Cryst. Liq. Cryst. 146, 1 (1987).
    97. N. A. Vaz, G. W. Smith, and G. P. Montgomery Jr., Mol. Cryst. Liq. Cryst. 146, 17 (1987).
    98. N. A. Vaz and G. P. Montgomery Jr., J. Appl. Phys. 62, 3161 (1987).
    99. J. L. West, Mol. Cryst. Liq. Cryst. 157, 427 (1988).
    100. J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead Jr., and B. G. Wu, Mol. Cryst. Liq. Cryst. 165, 511 (1988).
    101. G. Chidichimo, G. Arabia, J. W. Doane, and A. Golemme, Liq. Cryst. 131, 352 (1989).
    102. G. W. Smith, Mol. Cryst. Liq. Cryst. 196, 89 (1991).
    103. R. Yamaguchi and S. Sato, Jpn. J. Appl. Phys. 30, L616 (1991).
    104. P. Jiang and T. Asada, Mol. Cryst. Liq. Cryst. 222, 87 (1992).
    105. M. Radianguenebalid and P. Sixou, Mol. Cryst. Liq. Cryst. 220, 53 (1992).
    106. E. Shimada and T. Uchida, Jpn. J. Appl. Phys. 31, L352 (1992).
    107. P. Nolan, M. Tillin, and D. Coates, Liq. Cryst. 14, 339 (1993).
    108. K. Takiazawa, J. Kikuchi, H. Fujikake, Y. Narnkawa, and K. Tada, Jpn. J. Appl. Phys. 33, 1346 (1994).
    109. A. J. Lovinger, K. R. Amundson, and D. D. Davis, Chem. Mater. 6, 1726 (1994).
    110. V. P. ondiglia, L. V. Natarajan, and R. L. Sutherland, Opt. Lett. 20, 1325 (1995).
    111. Y. K. Fung, D. K. Yang, S. Ying, L. C. Chien, S. Zumer, and J. W. Doane, Liq. Cryst. 19, 797 (1995).
    112. K. Kato, K. Tanaka, S. Tsuru, and S. Sakai, Jpn. J. Appl. Phys. Part 1 34, 554 (1995).
    113. C. V. Rajaram, S. D. Hudson, and L. C. Chien, Chem. Mater. 7, 2300 (1995).
    114. C. V. Rajaram, S. D. Hudson, and L. C. Chien, Chem. Mater. 8, 2451 (1996).
    115. S. X. Cheng, R. K. Bai, Y. F. Zou, and C.Y. Pan, J. Appl. Phys. 80, 1991 (1996).
    116. J. H. Liu, H. S. Liu, and F. R. Tsai, Polym. Int. 42, 385 (1997).
    117. K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, and K. Kishi, Appl. Optics 36, 5732 (1997).
    118. D. B Chung, H. Tsuda, H. Chida, and A. Mochizuki, Mol. Cryst. Liq. Cryst. 304, 81 (1997).
    119. J. D. Legrange, S. A. Carter, M. Fuentes, J. Boo, A. E. Freeny, W. Cleveland, and T. M. Miller, J. Appl. Phys. 81, 5984 (1997).
    120. S. A. Carter, J. D. Legrange, W. White, J. Boo, and P. Wiltzius, J. Appl. Phys. 81, 5992 (1997).
    121. V. P. Tondiglia, L. V. Natarajan, R. M. Neal, R. L. Sutherland, and T. J. Bunningts, Mat. Res. Soc. Symp. Proc. 479, 235 (1997).
    122. J. B. Nwphew, T. C. Nihei, and S. A. Carter, Phys. Rev. Lett. 80, 3276 (1998).
    123. E. Nastal, E. Zuranska, and M. Mucha, J. Appl. Polym. Sci. 71, 455 (1999).
    124. S. S. Patnaik and R. Pachter, Polym. 40, 6507 (1999).
    125. R. Bhargava, S. Q. Wang, and J. L. Koenig, Macromolec. 32, 8989 (1999).
    126. N. H. Prk, S. A. Cho, J. Y. Kim, and K. D. Suh, J. Appl. Polym. Sci. 77, 3178 (2000).
    127. J. B. Whitehead Jr. and G. P. Crawford, Polym. Prepr. 41, 1067 (2000).
    128. F. P. Nicoletta, J. Lanzo, G. D. Filpo, and G. Chidichimo, Langmuir 17, 534 (2001).
    129. F. Du and S. T. Wu, Appl. Phys. Lett. 83, 1310 (2003).
    130. T. J. Chen, Y. F. Chen, C. H. Sun, and J. J. Wu, Jpn. J. Appl. Phys. 43, L557 (2004).
    131. G. H. Gelinck, H. E. A. Huitema, E. V. Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. V. D. Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. V. Rens, and D. M. D. Leeuw, Nature Materials 3, 106 (2004).
    132. H. Kihara, T. Miura, R. Kishi, and A. Kaito, Polym. 45, 6357 (2004).
    133. H. Kihara and T. Miura, Polym. 46, 10378 (2004).
    134. E. A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenko, and J. L. West, Jpn. J. Appl. Phys. 45, 4146 (2006).
    135. L. Blinov and V. Chigrinov, Electrooptical Effects in Liquid Crystal, Springer, Berlin (1993).
    136. P. S. Drzaic, Liquid Crystal Dispersions, World Scientific, Singapore (1995).
    137. G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries, Taylor and Francis, London (1996).
    138. R. A. M. Hikmet, J. Appl. Phys. 68, 4406 (1990).
    139. V. V. Krongauz, E. R. Schmelzer, and R. M. Yohannan, Polym. 32, 1654 (1991).
    140. R. A. M. Hikmet, and H. M. J. Boots, Phys. Rev. E 51, 5824 (1995).
    141. I. Dierking, Adv. Mater. 12, 167 (2000).
    142. P. A. Kossyrev, J. Qi, N. V. Priezjev, and R. A. Pelcovits, Appl. Phys. Lett. 81, 2986 (2002).
    143. T. Murashige, H. Fujikake, S. Ikehata, and F. Sato, Jpn. J. Appl. Phys. 42, 1614 (2003).
    144. Y. H. Fan, H. Ren, and S. T. Wu, Appl. Phys. Lett. 82, 2945 (2003).
    145. Y. H. Fan, H. Ren, and S. T. Wu, Opt. Express 11, 3082 (2003)
    146. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, Appl. Phys. Lett. 84, 1233 (2004).
    147. Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, and S. T. Wu, Appl. Phys. Lett. 85, 2451 (2004).
    148. R. Stannarius, G. P. Crawford, L. C. Chien, and J. W. Doane, J. Appl. Phys. 70, 135 (1991).
    149. H. Takatsu, K. Takeuchi, and Y. Umezu, Mol. Cryst. Liq. Cryst. 225, 81 (1993).
    150. C. H. Noh, J. E. Jung, J. Y. Kim, D. S. Sakong, and K. S. Choi, Mol. Cryst. Liq. Cryst. 237, 299 (1993).
    151. G. W. Smith, Mol. Cryst. Liq. Cryst. 241, 77 (1994).
    152. F. H. Lin, C. Y. Ho, and J. Y. Lee, J. Technol. (Accepted) (2010).
    153. L. T. Creagh, and A. R. Kmetz, Mol. Cryst. Liq. Cryst. 24, 59 (1973).
    154. F. J. Kahn, G. N. Taylor, and H. Schonhorn, Proc. IEEE 61, 823 (1973).
    155. J. T. Wan, O. K. Tsui, H. S. Kwok, and P. Sheng, Phys. Rev. E 72, 021711 (2005).
    156. F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, Appl. Phys. Lett. 88, 051910 (2006).
    157. D. S. Seo, S. Kobayashi, M. Nishikawa, and Y. Yabe, Jpn. J. Appl. Phys. 35, 3531 (1996).
    158. D. S. Seo and S. Kobayashi, Liq. Cryst. 27, 883 (2000).
    159. W. C. Lee, J. T. Chen, and C. S. Hsu, Liq. Cryst. 29, 907 (2002).
    160. J. Hwang, S. H. Lee, S. K. Peak, and D. Seo, Jpn. J. Appl. Phys. 42, 1713 (2003).
    161. Y. J. Lee, J. G. Choi, I. S. Song, J. M. Oh, and M. H. Yi, Polym. 47, 1555 (2006).
    162. A. M. Lackner, J. D. Margerum, L. J. Miller, and W. H. Smith, Proc. SID 31, 321 (1990).
    163. J. A. Moore, and A. N. Dasheff, Chem. Mater. 1, 163 (1988).
    164. B. Bahadur, Liquid Crystal: Applications and Uses, World Scientific, Singapore (1990).
    165. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, John Wiley and Sons, New York (1999).
    166. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon, Oxford (1993).
    167. K. A. Crandall, M. R. Fisch, R. G. Petschek, and C. Rosenblatt, Appl. Phys. Lett. 65, 118 (1994).
    168. H. Kaczmarek and C. Decker, J. Appl. Polym. Sci. 54, 2417 (1994).
    169. Y. S. Kim and C. S. P. Sung, J. Appl. Polym. Sci. 57, 363 (1995).
    170. C. Decker, Polym. Int. 51, 1141 (2002).
    171. K. Mequanint and R. D. Sanderson, Macromol. Symp. 193, 169 (2003).
    172. R. Zhong, J. Yang, Z. Zeng, and Y. Chen, Polym. Int. 55, 650 (2006).
    173. J. Kong, X. Fan, G. Zhang, X. Xie, Q. Si, and S. Wang, Polym. 47, 1519 (2006).
    174. X. Chen, Y. Hu, C. Jiao, and L. Song, Prog. Org. Coat. 59, 318 (2007).
    175. X. Zhang, J. Yang, Z. Zeng, Y. Wu, L. Huang, Y. Chen, and H. Wang, Polym. Eng. Sci. 47, 1082 (2007).
    176. H. Kilambi, S. K. Reddy, and C. N. Bowman, Macromolec. 40, 6131 (2007).
    177. X. Chen, Y. Hu, L. Song, and C. Jiao, Polym. Adv. Techanol. 19, 322 (2008).
    178. P. Xiao, M. Dai, and J. Nie, J. Appl. Polym. Sci. 108, 665 (2008).
    179. G. Spurce and R. D. Pringle, Mol. Cryst. Liq. Cryst. 154, 307 (1988).
    180. G. P. Montgomery Jr. and N. A. Vaz, Appl. Optics 26, 738 (1987)
    181. H. H. Byoung, J. A. Han, J. R. Soon, S. C. Soo, and K. B. Hong, Langmuir 25, 8306 (2009).
    182. E. Jakeman and E. P. Raynes, Phys. Lett. 39A 69 (1972).
    183. Y. A. Nastishin, R. D. Polak, and S. V. Shiyanovskii, Appl. Phys. Lett. 75, 202 (1999).
    184. X. T. Li, A. Kawakami, H. Akiyama, S. Kobayashi, and Y. Iimura, Jpn. J. Appl. Phys. 37, L743 (1998).
    185. C. H. Chiang, S. Y. T. Tzeng, F. C. SIE, R. H. Huang, P. C. Wu, J. J. Wu, T. Y. Lin, A. S. Liu, L. H. Hsu, W. L. Liau, and S. C. Len, Jpn. J. Appl. Phys. 46, 5917 (2007).
    186. X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, J. Display Technology 3, 280 (2007).
    187. M. Jiao, Z. Ge, Q. Song, and S. T. Wu, Appl. Phys. Lett. 92, 061102 (2008).
    第四章 參考文獻
    1. V. Vorflusev, S. Kumar, Science 1999, 283, 1903.
    2. T. Sugiyama, S. Kuniyasu, D. S. Seo, H. Fukuro, S. Kobayashi, Jpn. J. Appl. Phys. 1990, 29, 2045.
    3. J. V. Haaren, Nature 2001, 411, 29.
    4. B. Li, T. He, Y. Li, M. Ding, Polym. Adv. Technol. 1997, 8, 513.
    5. M. Nishikawa, Polym. Adv. Technol. 2000, 11, 404.
    6. Y. J. Lee, Y. W. Kim, J. D. Ha, J. M. Oh, M. H. Yi, Polym. Adv. Technol. 2007, 18, 226.
    7. L. Blinov, V. Chigrinov, Electrooptical effects in liquid crystals, Springer, Berlin, 1993.
    8. P. S. Drzaic, Liquid Crystal Dispersions, World Scientific, Singapore, 1995.
    9. G. P. Crawford, S. Zumer, Liquid Crystals in Complex Geometries, Taylor and Francis, London, 1996.
    10. H. G. Craighead, J. Cheng, S. Hackwood, Appl. Phys. Lett. 1982, 40, 22.
    11. J. W. Doane, N. A. Vaz, B. G. Wu, S. Zumer, Appl. Phys. Lett. 1986, 48, 269.
    12. P. S. Drzaic, J. Appl. Phys. 1986, 60, 2142.
    13. N. A. Vaz, G. W. Smith, G. P. Montgomery Jr., Mol. Cryst. Liq. Cryst. 1987, 146, 1.
    14. N. A. Vaz, G. W. Smith, G. P. Montgomery Jr., Mol. Cryst. Liq. Cryst. 1987, 146, 17.
    15. N. A. Vaz, G. P. Montgomery Jr., J. Appl. Phys. 1987, 62, 3161.
    16. J. L. West, Mol. Cryst. Liq. Cryst. 1988, 157, 427.
    17. J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead Jr., B. G. Wu, Mol. Cryst. Liq. Cryst. 1988, 165, 511.
    18. G. Chidichimo, G. Arabia, J. W. Doane, A. Golemme, Liq. Cryst. 1989, 131, 352.
    19. G. W. Smith, Mol. Cryst. Liq. Cryst. 1991, 196, 89.
    20. R. Yamaguchi, S. Sato, Jpn. J. Appl. Phys. 1991, 30, L616.
    21. P. Jiang, T. Asada, Mol. Cryst. Liq. Cryst. 1992, 222, 87.
    22. M. Radianguenebalid, P. Sixou, Mol. Cryst. Liq. Cryst. 1992, 220, 53.
    23. E. Shimada, T. Uchida, Jpn. J. Appl. Phys. 1992, 31, L352.
    24. P. Nolan, M. Tillin, D. Coates, Liq. Cryst. 1993, 14, 339.
    25. K. Takiazawa, J. Kikuchi, H. Fujikake, Y. Narnkawa, K. Tada, Jpn. J. Appl. Phys. 1994, 33, 1346.
    26. A. J. Lovinger, K. R. Amundson, D. D. Davis, Chem. Mater. 1994, 6, 1726.
    27. V. P. ondiglia, L. V. Natarajan, R. L. Sutherland, Opt. Lett. 1995, 20, 1325.
    28. Y. K. Fung, D. K. Yang, S. Ying, L. C. Chien, S. Zumer, J. W. Doane, Liq. Cryst. 1995, 19, 797.
    29. K. Kato, K. Tanaka, S. Tsuru, S. Sakai, Jpn. J. Appl. Phys. Part 1, 1995, 34, 554.
    30. C. V. Rajaram, S. D. Hudson, L. C. Chien, Chem. Mater. 1995, 7, 2300.
    31. C. V. Rajaram, S. D. Hudson, L. C. Chien, Chem. Mater. 1996, 8, 2451.
    32. S. X. Cheng, R. K. Bai, Y. F. Zou, C. Y. Pan, J. Appl. Phys. 1996, 80, 1991.
    33. K. Mizoguchil, E. Hasegawa, Polym. Adv. Technol. 1996, 7, 471.
    34. D. S. Muzic, C. V. Rajaram, L. C. Chien, S. D. Hudson, Polym. Adv. Technol. 1996, 7, 737.
    35. J. H. Liu, H. S. Liu, F. R. Tsai, Polym. Int. 1997, 42, 385.
    36. K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, Appl. Optics. 1997, 36, 5732.
    37. D. B Chung, H. Tsuda, H. Chida, A. Mochizuki, Mol. Cryst. Liq. Cryst. 1997, 304, 81.
    38. J. D. Legrange, S. A. Carter, M. Fuentes, J. Boo, A. E. Freeny, W. Cleveland, T. M. Miller, J. Appl. Phys. 1997, 81, 5984.
    39. S. A. Carter, J. D. Legrange, W. White, J. Boo, P. Wiltzius, J. Appl. Phys. 1997, 81, 5992.
    40. V. P. Tondiglia, L. V. Natarajan, R. M. Neal, R. L. Sutherland, T. J. Bunningts, Mat. Res. Soc. Symp. Proc. 1997, 479, 235.
    41. J. B. Nwphew, T. C. Nihei, S. A. Carter, Phys. Rev. Lett. 1998, 80, 3276.
    42. E. Nastal, E. Zuranska, M. Mucha, J. Appl. Polym. Sci. 1999, 71, 455.
    43. S. S. Patnaik, R. Pachter, Polym. 1999, 40, 6507.
    44. R. Bhargava, S. Q. Wang, J.L. Koenig, Macromolec. 1999, 32, 8989.
    45. J. H. Liu, F. R. Tsai, T. Y. Tsai, Polym. Adv. Technol. 2000, 11, 228.
    46. N. H. Prk, S. A. Cho, J. Y. Kim, K. D. Suh, J. Appl. Polym. Sci. 2000, 77, 3178.
    47. J. B. Whitehead Jr., G. P. Crawford, Polym. Prepr. 2000, 41, 1067.
    48. F. P. Nicoletta, J. Lanzo, G. D. Filpo, G. Chidichimo, Langmuir 2001, 17, 534.
    49. F. Du, S. T. Wu, Appl. Phys. Lett. 2003, 83, 1310.
    50. T.J. Chen, Y.F. Chen, C.H. Sun, J.J. Wu, Jpn. J. Appl. Phys. 43 (2004) L557.
    51. G. H. Gelinck, H. E. A. Huitema, E. V. Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. V. D. Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. V. Rens, D. M. D. Leeuw, Nat. Mater. 2004, 3, 106.
    52. H. Kihara, T. Miura, R. Kishi, A. Kaito, Polym. 2004, 45, 6537.
    53. H. Kihara, T. Miura, Polym. 2004, 46, 10378.
    54. E. A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenko, J. L. West, Jpn. J. Appl. Phys. 2006, 45, 4146.
    55. R. A. M. Hikmet, J. Appl. Phys. 1990, 68, 4406.
    56. V. V. Krongauz, E. R. Schmelzer, R. M. Yohannan, Polym. 1991, 32, 1654.
    57. R. A. M. Hikmet, H. M. J. Boots, Phys. Rev. E 1995, 51, 5824.
    58. I. Dierking, Adv. Mater. 2000, 12, 167.
    59. P. A. Kossyrev, J. Qi, N. V. Priezjev, R. A. Pelcovits, Appl. Phys. Lett. 2002, 81, 2986.
    60. T. Murashige, H. Fujikake, S. Ikehata, F. Sato, Jpn. J. Appl. Phys. 2003, 42, 1614.
    61. Y. H. Fan, H. Ren, S. T. Wu, Appl. Phys. Lett. 2003, 82, 2945.
    62. Y. H. Fan, H. Ren, S. T. Wu, Opt. Express 2003, 11, 3082.
    63. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, S. T. Wu, Appl. Phys. Lett. 2004, 84, 1233.
    64. Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, S. T. Wu, Appl. Phys. Lett. 2004, 85, 2451.
    65. S. S. Shim, J. Y. Woo, K. H. Kim, B. K. Kim, Polym. Adv. Technol. 2008, 19, 1550.
    66. K. R. Sun, J. Y. Woo, Y. H. Cho, B. K. Kim, Polym. Adv. Technol. 2009, 20, 501.
    67. Q. Wang, J. O. Park, M. Srinivasarao, L. Qiu, S. Kumar, Jpn. J. Appl. Phys. 2005, 44, 3115.
    68. T. Qian, J. H. Kim, S. Kumar, P. L. Taylor, Phys. Rev. E 2000, 61, 4007.
    69. F. H. Lin, C. Y. Ho, J. Y. Lee, J. Technol. 2010 (to be published).
    70. C. Y. Ho, J. Y. Lee, Liq. Cryst. 2010, 37, 997.
    71. Q. Wang, B. Acharya, H. C. Choi, S. Kumar, Proc. SPIE 2003, 5003, 81.
    72. Q. Wang, S. Kumar, Appl. Phys. Lett. 2005, 86, 071119.
    73. H. Kaczmarek, C. Decker, J. Appl. Polym. Sci. 1994, 54, 2417.
    74. Y. S. Kim, C. S. P. Sung, J. Appl. Polym. Sci. 1995, 57, 363.
    75. C. Decker, Polym. Int. 2002, 51, 1141.
    76. K. Mequanint, R. D. Sanderson, Macromol. Symp. 2003, 193, 169.
    77. R. Zhong, J. Yang, Z. Zeng, Y. Chen, Polym. Int. 2006, 55, 650.
    78. J. Kong, X. Fan, G. Zhang, X. Xie, Q. Si, S. Wang, Polym. 2006, 47, 1519.
    79. X. Chen, Y. Hu, C. Jiao, L. Song, Prog. Org. Coat. 2007, 59, 318.
    80. X. Zhang, J. Yang, Z. Zeng, Y. Wu, L. Huang, Y. Chen, H. Wang, Polym. Eng. Sci. 2007, 47, 1082.
    81. H. Kilambi, S. K. Reddy, C. N. Bowman, Macromolec. 2007, 40, 6131.
    82. X. Chen, Y. Hu, L. Song, C. Jiao, Polym. Adv. Techanol. 2008, 19, 322.
    83. P. Xiao, M. Dai, J. Nie, J. Appl. Polym. Sci. 2008, 108, 665.
    84. M. F. Schiekel, K. Fahrenschon, Appl. Phys. Lett. 1971, 19, 391.
    85. M. Hareng, G. Assouline, E. Leiba, Electron. Lett. 1971, 7, 699.
    86. M. Hareng, G. Assouline, E. Leiba, Proc. IEEE 1972, 60, 913.
    87. A. M. Lackner, J. D. Margerum, L. J. Miller, W. H. Smith, Proc. SID 1990, 31, 321.
    88. B. Bahadur, Liquid Crystal: Applications and Uses, World Scientific, Singapore, 1990.
    89. J. A. Moore, A. N. Dasheff, Chem. Mater. 1988, 1, 163.
    90. G. Spurce, R. D. Pringle, Mol. Cryst. Liq. Cryst. 1988, 154, 307.
    91. P. Yeh, C. Gu, Optics of Liquid Crystal Displays, John Wiley and Sons, New York, 1999.
    92. P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, Clarendon, Oxford, 1993.
    93. D. S. Seo, J. Kor. Phys. Soc. 1999, 43, 359.
    94. M. Schadt, K. Schmitt, V. Kozinkov, V. Chigrinovl Switzerl, Jpn. J. Appl. Phys. 1992, 31, 2155.
    95. W. J. Miller, N. L. Abbott, Langmuir 1997, 13, 7106.
    96. T. Ito, K. Nakanishi, M. Nishikawa, Y. Yokoyama, Y. Takeuchi, Langmuir 1995, 27, 240.
    97. J. J. Ge, C. Y. Li, G. Xue, I. K. Mann, D. Zhang, S. Y. Wang, F. W. Harris, S. Z. D. Cheng, S. C. Hong, X. Zhuang, Y. R. Shen, J. Am. Chem. Soc. 2001, 123, 5678.
    98. H. H. Byoung, J. A. Han, J. R. Soon, S. C. Soo, K. B. Hong, Langmuir 2009, 25, 8306.
    99. S. T. Wu, U. Efron, Appl. Phys. Lett. 1986, 48, 624.
    100. M. Jiao, Z. Ge, Q. Song, S. T. Wu, Appl. Phys. Lett. 2008, 92, 061102.
    101. E. Jakeman, E. P. Raynes, Phys. Lett. 1972, 39A, 69.
    102. J. Nehring, A. R. Kmetz, T. J. Scheffer, J. Appl. Phys. 1976, 47, 850.
    103. X. Nie, R. Lu, H. Xianyu, T. X. Wu, S. T. Wu, J. Appl. Phys. 2007, 101, 103110.
    104. X. Nie, Y. H. Lin, T. X. Wu, H.Wang, Z. Ge, S. T. Wu, J. Appl. Phys. 2005, 98, 013516.
    105. Y. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, Appl. Phys. Lett. 1999, 75, 202.
    106. X. T. Li, A. Kawakami, H. Akiyama, S. Kobayashi, Y. Iimura, Jpn. J. Appl. Phys. 1998, 37, L743.
    107. X. Nie, H. Xianyu, R. Lu, T. X. Wu, S. T. Wu, J. Display Technol. 2007, 3, 280.
    108. C. H. Chiang, S. Y. T. Tzeng, F. C. SIE, R. H. Huang, P. C. Wu, J. J. Wu, T. Y. Lin, A. S. Liu, L. H. Hsu, W. L. Liau, S. C. Len, Jpn. J. Appl. Phys. 2007, 46, 5917.
    109. H. Wang, T. X. Wu, X. Zhu, S. T. Wu, J. Appl. Phys. 2004, 95, 5502.
    第五章 參考文獻
    1. J.V. Haaren, Nature 411 (2001) 29.
    2. T. Sugiyama, S. Kuniyasu, D.S. Seo, H. Fukuro, S. Kobayashi, Jpn. J. Appl. Phys. 29 (1990) 2045.
    3. P.L. Egerton, E. Pitts, A. Reister, Macromolec. 14 (1981) 95.
    4. J.A. Castellano, Mol. Cryst. Liq. Cryst. 94 (1983) 33.
    5. J.M. Geary, J.W. Goodby, A.R. Kmetz, J.S. Patel, J. Appl. Phys. 62 (1987) 4100.
    6. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aoki, Langmuir 4 (1988) 1214.
    7. W.M. Gibbons, P.J. Shannon, S.T. Sun, B.J. Swetlin, Nature 351 (1991) 49.
    8. M. Schadt, K. Schmitt, V. Kozinkov, V. Chigrinovl, Jpn. J. Appl. Phys. 31 (1992) 2155.
    9. M. Nishikawa, Y. Yokoyama, N. Bessho, D.S. Seo, Y. Iimura, S. Kobayashi, Jpn. J. Appl. Phys. 33 (1994) L810.
    10. P.J. Shannon, W.M. Gibbons, Nature 368 (1994) 532.
    11. K. Ichimura, Y. Akita, H. Akiyama, Y. Hayashi, K. Kudo, Jpn. J. Appl. Phys. 35 (1996) L992.
    12. M. Schadt, H. Seiberle, A. Schuster, Nature 381 (1996) 212.
    13. K.W. Lee, A. Lien, J.H. Stathis, S.H. Paek, Jpn. J. Appl. Phys. 36 (1997) 3591.
    14. Y. Wang, C. Xu, A. Kanazawa, T. Shiono, T. Ikeda, J. Appl. Phys. 84 (1998) 181.
    15. Y. Wang, C. Xu, A. Kanazawa, T. Shiono, T. Ikeda, J. Appl. Phys. 84 (1998) 4573.
    16. Y. Wang, A. Kanazawa, T. Shiono, T. Ikeda, Appl. Phys. Lett. 72, (1998) 545.
    17. M. Nishikawa, J.L. West, Jpn. J. Appl. Phys. Part 1 38 (1999) 5183.
    18. K.J. Han, Y. Jung, H.H. Choi, HK. Hwang, S. Lee, S. Humjang, J. Appl. Phys. 86 (1999) 1854.
    19. S. Perny, P.L. Barny, J Delaire, Liq. Cryst. 27 (2000) 349.
    20. K. Ichimura, Chem. Rev. 100 (2000) 1847.
    21. A.E.A. Contoret, S.R. Farrar, P.O. Jackson, S.M. Khan, L. May, M. O’Neill, J.E. Nicholls, S.M. Kelly, G.J. Richards, Adv. Mater. 12 (2000) 971.
    22. Y. Wang, S. Xu, A. Kanazawa, T. Shiono, T. Ikeda, Y. Matsuki, U. Takeuchi, Liq. Cryst. 28 (2001) 473.
    23. Y.J. Fang, S.M. Chen, R. Shashidhar, Langmuir 17 (2001) 1549.
    24. B. Lee, N.A. Clark, Science 291 (2001) 2576..
    25. J. Stohr, M.G. Samant, J. Luning, A.C. Callegari, P. Chaudhari, J.P. Doyle, J.A. Lacey, S.C.A. Lien, S. Purushothaman, J.L. Speidell, Science 292 (2001) 2299.
    26. D.H. Choi, Y.K. Cha, Bull. Kor. Chem. Soc. 23 (2002) 587.
    27. M. Behdani, H.S. Keshmiri, S. Soria, A.M. Bader, J. Ihlemann, G. Marowsky, T. Rasing, Appl. Phys. Lett. 82 (2003) 2553.
    28. D.D. Huang, E.P. Pozhidaevl, V.G. Chigrinov, H.L. Cheung, Y.L. Ho, H.S. Kwok, Displays 25 (2004) 21.
    29. J.H. Parka, I.C. Khoo, C.J. Yu, M.S. Jung, S.D. Lee, Appl. Phys. Lett. 86 (2005) 021906.
    30. M. J. Paterson, Diam. Relat. Mater. 5 (1996) 1407.
    31. M. J. Paterson, Diam. Relat. Mater. 7 (1998) 908.
    32. P. Chaudhari, J.A. Lacey, S.C.A. Lien, J.L. Speidell, Jpn. J. Appl. Phys. 37, (1998) L55.
    33. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.C.A. Lien, A. Callegari, G. Hougham, D.N. Lang, S.P. Andry, R. John, H.K. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stohr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, Y. Shiota, Nature 411 (2001) 56.
    34. J.S. Gwag, K.H. Park, D.J. Kang, C.G. Jhun, H. Kim, S.J. Cho, T.H. Yoon, J.C. Kim, Jpn. J. Appl. Phys. 42 (2003) L468.
    35. X.M. Lu, Q.H. Lu, Z.K. Zhu, J. Yin, Z.G. Wang, Chem. Phys. Lett. 377 (2003) 433.
    36. F.C. Saunders, J. Staromlynska, G.W. Smith, M.F. Daniel, Mol. Cryst. Liq. Cryst. 122 (1985) 297.
    37. R.K. Gupta, K.A. Suresh, R. Guo, S. Kumar, Anal. Chim. Acta. 568 (2006) 109.
    38. V.V. Zhurin, H.R. Kaufman, R.S. Robinson, Plasma Sources Sci. Technol. 8 (1999) R1.
    39. C.J. Newsome, M. O’Neill, J. Appl. Phys. 92 (2002) 1752.
    40. O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, L. Qiu, O. D. Lavrentovich, Liq. Cryst. 31 (2004) 859.
    41. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Science 272 (1996) 85.
    42. Y. Xia, G.M. Whitesides, Angew. Chem. Int. Ed. 37 (1998) 551.
    43. C. Marzolin, S.P. Smith, M. Prentiss, G.M. Whitesides, Adv. Mater. 10 (1998) 571.
    44. S.Y. Chou, C. Keimei, J. Gu, Nature 417 (2002) 835.
    45. D.R. Chiou, K.Y. Yeh, L.J. Chen, Appl. Phys. Lett. 88 (2006) 133123.
    46. D.R. Chiou, L.J. Chen, Langmuir 22 (2006) 9403.
    47. F.H. Lin, C.Y. Ho, J.Y. Lee, J. Technol. (to be published) (2010).
    48. C.Y. Ho, J.Y. Lee, Liq. Cryst. 37 (2010) 997.
    49. L.S. Wang, C.Y. Ho, J.Y. Lee, J. Technol. (to be published) (2010).
    50. P.S. Tsai, C.Y. Ho, J.Y. Lee, J. Technol. (to be published) (2010).
    51. C.Y. Ho, P.S. Tsai, H.G. Lin, F.C. Li, F.H. Lin, J.Y. Lee, Polym. Adv. Technol. (to be published) (2010).
    52. V. Vorflusev, S. Kumar, Science 283 (1999) 1903.
    53. V. Vorflusev, J.H. Kim, S. Kumar, Pramana-J. Phys. 53 (1999) 121.
    54. B.R. Acharya, J.H. Kim, S. Kumar, Jpn. J. Appl. Phys. Part 2 38 (1999) L1538.
    55. T. Qian, J.H. Kim, S. Kumar, P.L. Taylor, Phys. Rev. E 61 (2000) 4007.
    56. Y. Reznikov, O. Ostroverkhova, K.D. Singer, J.H. Kim, S. Kumar, O. Lavrentovich, B. Wang, J.L. West, Phys. Rev. Lett. 84 (2000) 1930.
    57. I. Kim, J.H Kim, D. Kang, D.M.A. Kooijman, S. Kumar, J. Appl. Phys. 92 (2002) 7699.
    58. Q. Wang, L.C. Chien, S. Kumar, Appl. Phys. Lett. 83 (2003) 3698.
    59. J.H. Kim, S. Kumar, Jpn. J. Appl. Phys. 43 (2004) 7050.
    60. J.H. Kim, V. Vorflusev, S. Kumar, Displays 25 (2004) 207.
    61. J.H. Kim, S. Kumar, J. Lightwave Technol. 23 (2005) 628.
    62. Q. Wang, J.O. Park, M. Srinivasarao, L. Qiu, S. Kumar, Jpn. J. Appl. Phys. 44 (2005) 3115.
    63. Q. Wang, S. Kumar, Appl. Phys. Lett. 86 (2005) 071119.
    64. S. Kumar, J.H. Kim, Y. Shi, Phys. Rev. Lett. 94 (2005) 077803.
    65. Q. Wang, R. Guo, S. Kumar, J. Soc. Inf. Display 14 (2006) 545.
    66. Q. Wang, R. Guo, M.R. Daj, S.W. Kang, S. Kumar, Jpn. J. Appl. Phys. 46 (2007) 299.
    67. H. Choi, D.W. Kim, K.W. Rhie, M.P. Hong, S.T. Shin, S. Kumar, W. G. Jang, B. W. Lee, and K. H. Kim, Jpn. J. Appl. Phys. 47 (2008) 1008.
    68. J.W. Doane, N.A. Vaz, B.G. Wu, S. Zumer, Appl. Phys. Lett. 48 (1986) 269.
    69. E. Shimada, T. Uchida, Jpn. J. Appl. Phys. 31 (1992) L352.
    70. R. Stannarius, G.P. Crawford, L.C. Chien, J.W. Doane, J. Appl. Phys. 70 (1991) 135.
    71. H. Takatsu, K. Takeuchi, Y. Umezu, Mol. Cryst. Liq. Cryst. 225 (1993) 81.
    72. C.H. Noh, J.E. Jung, J.Y. Kim, D.S. Sakong, K.S. Choi, Mol. Cryst. Liq. Cryst. 237 (1993) 299.
    73. G.W. Smith, Mol. Cryst. Liq. Cryst. 241 (1994) 77.
    74. H.G. Craighead, J. Cheng, S. Hackwood, Appl. Phys. Lett. 40 (1982) 22.
    75. P.S. Drzaic, J. Appl. Phys. 60 (1986) 2142.
    76. N.A. Vaz, G.W. Smith, G.P. Montgomery Jr., Mol. Cryst. Liq. Cryst. 146 (1987) 1.
    77. N.A. Vaz, G.W. Smith, G.P. Montgomery Jr., Mol. Cryst. Liq. Cryst. 146 (1987) 17.
    78. N.A. Vaz, G.P. Montgomery Jr., J. Appl. Phys. 62 (1987) 3161.
    79. J.L. West, Mol. Cryst. Liq. Cryst. 157 (1988) 427.
    80. J.W. Doane, A. Golemme, J.L. West, J.B. Whitehead Jr., B.G. Wu, Mol. Cryst. Liq. Cryst. 165 (1988) 511.
    81. G. Chidichimo, G. Arabia, J.W. Doane, A. Golemme, Liq. Cryst. 131 (1989) 352.
    82. G.W. Smith, Mol. Cryst. Liq. Cryst. 196 (1991) 89.
    83. R. Yamaguchi, S. Sato, Jpn. J. Appl. Phys. 30 (1991) L616.
    84. P. Jiang, T. Asada, Mol. Cryst. Liq. Cryst. 222 (1992) 87.
    85. M. Radianguenebalid, P. Sixou, Mol. Cryst. Liq. Cryst. 220 (1992) 53.
    86. P. Nolan, M. Tillin, D. Coates, Liq. Cryst. 14 (1993) 339.
    87. K. Takiazawa, J. Kikuchi, H. Fujikake, Y. Narnkawa, K. Tada, Jpn. J. Appl. Phys. 33 (1994) 1346.
    88. A.J. Lovinger, K.R. Amundson, D.D. Davis, Chem. Mater. 6 (1994) 1726.
    89. Y.K. Fung, D.K. Yang, S. Ying, L.C. Chien, S. Zumer, J.W. Doane, Liq. Cryst. 19 (1995) 797.
    90. K. Kato, K. Tanaka, S. Tsuru, S. Sakai, Jpn. J. Appl. Phys. Part 1 34 (1995) 554.
    91. V.P. ondiglia, L.V. Natarajan, R.L. Sutherland, Opt. Lett. 20 (1995) 1325.
    92. C.V. Rajaram, S.D. Hudson, L.C. Chien, Chem. Mater. 7 (1995) 2300.
    93. C.V. Rajaram, S.D. Hudson, L.C. Chien, Chem. Mater. 8 (1996) 2451.
    94. S.X. Cheng, R.K. Bai, Y.F. Zou, C.Y. Pan, J. Appl. Phys. 80 (1996) 1991.
    95. P.S. Drzaic, Liquid Crystal Dispersions, World Scientific, Singapore, 1995.
    96. G.P. Crawford, S. Zumer, Liquid Crystals in Complex Geometries, Taylor & Francis, London, 1996.
    97. D.B Chung, H. Tsuda, H. Chida, A. Mochizuki, Mol. Cryst. Liq. Cryst. 304 (1997) 81.
    98. J.H. Liu, H.S. Liu, F.R. Tsai, Polym. Int. 42 (1997) 385.
    99. J.D. Legrange, S.A. Carter, M. Fuentes, J. Boo, A.E. Freeny, W. Cleveland, T.M. Miller, J. Appl. Phys. 81 (1997) 5984.
    100. S.A. Carter, J.D. Legrange, W. White, J. Boo, P. Wiltzius, J. Appl. Phys. 81 (1997) 5992.
    101. V.P. Tondiglia, L.V. Natarajan, R.M. Neal, R.L. Sutherland, T.J. Bunningts, Mat. Res. Soc. Symp. Proc. 479 (1997) 235.
    102. K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, Appl. Optics 36 (1997) 5732.
    103. J.B. Nwphew, T.C. Nihei, S.A. Carter, Phys. Rev. Lett. 80 (1998) 3276.
    104. E. Nastal, E. Zuranska, M. Mucha, J. Appl. Polym. Sci. 71 (1999) 455.
    105. S.S. Patnaik, R. Pachter, Polym. 40 (1999) 6507.
    106. R. Bhargava, S.Q. Wang, J.L. Koenig, Macromolec. 32 (1999) 8989.
    107. N.H. Prk, S.A. Cho, J.Y. Kim, K.D. Suh, J. Appl. Polym. Sci. 77 (2000) 3178.
    108. J.B. Whitehead Jr., G.P. Crawford, Polym. Prepr. 41 (2000) 1067.
    109. I. Dierking, Adv. Mater. 12 (2000) 167.
    110. F.P. Nicoletta, J. Lanzo, G.D. Filpo, G. Chidichimo, Langmuir 17 (2001) 534.
    111. F. Du, S.T. Wu, Appl. Phys. Lett. 83 (2003) 1310.
    112. T.J. Chen, Y.F. Chen, C.H. Sun, J.J. Wu, Jpn. J. Appl. Phys. 43 (2004) L557.
    113. G.H. Gelinck, H.E.A. Huitema, E.V. Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H.V. D. Putten, T.C.T. Geuns, M. Beenhakkers, J.B. Giesbers, B.H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J.E.V. Rens, D.M.D. Leeuw, Nature Materials 3 (2004) 106.
    114. H. Kihara, T. Miura, R. Kishi, A. Kaito, Polym. 45 (2004) 6357.
    115. H. Kihara, T. Miura, Polym. 46 (2004) 10378.
    116. E.A. Buyuktanir, M. Mitrokhin, B. Holter, A. Glushchenko, J.L. West, Jpn. J. Appl. Phys. 45 (2006) 4146.
    117. L. Blinov, V. Chigrinov, Electrooptical Effects in Liquid Crystal, Springer, Berlin, 1993.
    118. G.P. Crawford, S. Zumer, Liquid Crystals in Complex Geometries, Taylor and Francis, London, 1996.
    119. R.A.M. Hikmet, J. Appl. Phys. 68 (1990) 4406.
    120. V.V. Krongauz, E.R. Schmelzer, R.M. Yohannan, Polym. 32 (1991) 1654.
    121. R.A.M. Hikmet, H.M.J. Boots, Phys. Rev. E 51 (1995) 5824.
    122. I. Dierking, Adv. Mater. 12 (2000) 167.
    123. P.A. Kossyrev, J. Qi, N.V. Priezjev, R.A. Pelcovits, Appl. Phys. Lett. 81 (2002) 2986.
    124. T. Murashige, H. Fujikake, S. Ikehata, F. Sato, Jpn. J. Appl. Phys. 42 (2003) 1614.
    125. Y.H. Fan, H. Ren, S.T. Wu, Appl. Phys. Lett. 82 (2003) 2945.
    126. Y.H. Fan, H. Ren, S.T. Wu, Opt. Express 11 (2003) 3082.
    127. Y.H. Fan, Y.H. Lin, H. Ren, S. Gauza, S.T. Wu, Appl. Phys. Lett. 84 (2004) 1233.
    128. Y.H. Fan, H. Ren, X. Liang, Y.H. Lin, S.T. Wu, Appl. Phys. Lett. 85 (2004) 2451.
    129. S.W. Choi a, S. Matsumoto, Y. Takanishi, K. Ishikawa, I. Nishiyama, J. Kawamura, H. Takada, H. Takezoe, Org. Electron. 7 (2006) 295.
    130. C.T. Liao, M.H. Jiang, N.C. Wu, Z.L. Wu, S.F. Zou, J.Y. Lee, J. Chin. Inst. Eng. (to be published) (2009).
    131. J.W. Goodby, M.A. Waugh, S.M. Stein, E. Chin, R. Pindak, J.S. Patel, J. Am. Chem. Soc. 111 (1989) 8119.
    132. J.W. Goodby, M.A. Waugh, S.M. Stein, E. Chin, R. Pindak, J.S. Patel, Nature 337 (1989) 449.
    133. P.G. de Gennes, Solid State Commun. 10 (1972) 753.
    134. S.R. Renn, T.C. Lubensky, Phys. Rev. A 38 (1988) 2132.
    135. G. Srajer, R. Pindak, M.A. Waugh, J.W. Goodby, Phys. Rev. Lett. 64 (1990) 1545.
    136. S.R. Renn, Phys. Rev. A 45 (1992) 953.
    137. K.J. Ihn, J.A.N. Zasadzinski, R. Pindak, A.J. Slaney, J.W. Goodby, Science, 258 (1992) 275.
    138. L. Navailles, P. Barois, H.T. Nguyen, Phs. Rev. Lett. 71 (1993) 545.
    139. S.L. Wu, P.C. Yen, W.J. Hsieh, Liq. Cryst. 24 (1998) 741.
    140. T. Seshadri, H.J. Haupt, Chem. Commun. (1998) 735.
    141. S.L. Wu, J.H. You, B.J. Uang, Liq. Cryst. 28 (2001) 69
    142. R. Bayon, S. Coco, P. Espinet, Chem. Mater. 14 (2002) 3515.
    143. S.W. Cha, J.I. Jin, M.F. Achard, F. Hardiyub, Liq. Cryst. 29 (2002) 755.
    144. J.W. Goodby, Curr. Opin. in Coll. and Inter. Sci. 7 (2002) 326.
    145. N.L. Kramarenko, V.I. Kulishovs, L.A. Kutulya, G.P. Semenkova, V.P. Seminozhenko, N.I. Shkolnikova, Liq. Cryst. 22 (1997) 535.
    146. P. Pollmann, H. Stegemeyer, Liq. Cryst. 26 (1999) 1845.
    147. I. Dierking, Liq. Cryst. 28 (2001) 165.
    148. R. Dhar, M.B. Pandey, V.K. Agrawal, Phase transitions 76 (2003) 763.
    149. R. Dhar, A.K. Srivastava, V.K. Agrawal, Phase transitions 76 (2003) 959.
    150. S.R. Renn, T.C. Lubensky, Mol. Cryst. Liq.Cryst. 209 (1991) 349.
    151. S.R. Renn, Phys. Rev. A 45 (1992) 953.
    152. I. Dierking, Textures of Liquid Crystals, Wiley-VCH, Weinheim, 2003.
    153. H.T. Nguyen, A.Bouchta, L. Navailles, P. Barois, N. Isaert, R.J. Twieg, A. Maaroufi, C. Destrade, J. Phys. II France 2 (1992) 1889.
    154. L. Navailles, P. Barois, H.T. Nguyen, Phys. Rev. Lett. 71 (1993) 545.
    155. J. Schacht, H. Baethge, F. Giesselmann, P. Zugenmaier, J. Mater. Chem. 8 (1998) 603.
    156. I. Dierking, S.T. Lagerwall, Liq. Cryst. 26 (1999) 83.
    157. M.H. Li, V. Laux, H.T. Nguyen, G. Sigaud, P. Barois, N. Isaert, Liq. Cryst. 23 (1997) 389.
    158. M. Young, G. Pitsi, M.H. Li, H.T. Nguyen, P. Jamee, G. Sigaud, J. Thoen, Liq. Cryst. 25 (1998) 387.
    159. C.V. Yelamaggad, N.L. Bonde, A.S. Achalkumar, D.S. Shankar Rao, S. Krishna Prasad, A.K. Prajapati, Chem. Mater. 19 (2007) 2463.
    160. M.B. Pandey, Ravindra Dhar, J. Indian Inst. Sci. 89 (2009) 147.
    161. T.C. Lubensky, Physica A 220 (1995) 99.
    162. Y. HU, L.J. Martinez-Miranda, Mat. Res. Soc. Symp. Proc. 543 (1999) 201.
    163. D.S. Shankar Rao, S.Krishna Prasad, V.N. Raja, C.V. Yelamaggad, S. Anitha Nagamani, Phys. Rev. Lett. 87 (2001) 085540.
    164. S.W. Cha, J.I. Jin, M. F. Achard, F. Hardouin, Liq. Cryst. 29 (2002) 755.
    165. S. Shubashree, B.K. Sadashiva, Curr. Sci. 85 (2003) 1061.
    166. V. Manjuladevi;N.V. Madhusudana, Liq. Cryst. 32 (2005) 1071.
    167. C.V. Yelamaggad, I.S. Shashikala, U.S. Hiremath, D.S. Shankar Rao, S.K. Prasad, Liq. Cryst. 34 (2007) 153.
    168. M. Gupta, R. Vaid, V. Gupta, R.K. Bamezai, Indian J. Chem. 47A (2008) 1512.
    169. M.B. Pandeya, R. Dharab, A.S. Achalkumarc, C.V. Yelamaggadc, Phase transitions 81 (2008) 449.
    170. C.V. Yelamaggad, G. Shanker, Tetrahedron 64 (2008) 3760.
    171. K.C. Majumdar, R. Kumar Sinha, S. Chakravorty, J. Phys. Chem. Solids. 70 (2009) 1171.
    172. K.C. Majumdar, S. Chakravorty, N. Pal a, Nandiraju V.S. Rao, Tetrahedron 65 (2009) 152.
    173. S. Garoff, R.B. Meyer, Phys. Rev. Lett. 38 (1977) 848.
    174. N.A. Clark, S.T. Lagerwall. Appl. Phys. Lett. 36 (1980) 899.
    175. G. Andersson, I. Dahl, P. Keller, W. Kuczyński, S. T. Lagerwall, K. Skarp, B. Stebler, Appl. Phys. Lett. 51 (1987) 640.
    176. S. Elston, R. Sambles, The Optics of Thermotropic Liquid Crystals, Taylor and Francis, London (1998).
    177. M.S. Spector, P.A. Heiney, J. Naciri, B.T. Weslowski, D.B. Holt, R. Shashidhar, Phys. Rev. E 61 (2000) 1579.
    178. K.D. Have, A. Dahlgren, P. Rudquist, J.P.F. Lagerwall, G. Andersson, M. Matuszczyk, S.T. Lagerwall, R. Dabrowski, W. Drzewinski, Ferroelectrics 244 (2000) 415.
    179. N.A. Clark, T. Bellini, R.F. Shao, D. Coleman, S. Bardon, D.R. Link, J.E. Maclennan, Appl. Phys. Lett. 80 (2002) 4097.
    180. G. Galli, M. Reihmann, A. Crudeli, E. Chiellini, Yu. Panarin, J. Vij, C. Blanc, V. Lorman, N. Olsson, Mol. Cryst. Liq. Cryst. 439, (2005) 2111.
    181. G. Spurce, R.D. Pringle, Mol. Cryst. Liq. Cryst. 154 (1988) 307.
    182. P. Yeh, C. Gu, Optics of Liquid Crystal Displays, John Wiley and Sons, New York, 1999.
    183. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, Clarendon, Oxford, 1993.
    184. M.F. Schiekel, K. Fahrenschon, Appl. Phys. Lett. 19 (1971) 391.
    185. M. Hareng, G. Assouline, E. Leiba, Electron. Lett. 7 (1971) 699.
    186. M. Hareng, G. Assouline, E. Leiba, Proc. IEEE 60 (1972) 913.
    187. A.M. Lackner, J.D. Margerum, L.J. Miller, W. H. Smith, Proc. SID 31 (1990) 321.
    188. S.K. Kundu, E. Okabe, W. Haase, B.K. Chaudhuri, Phys. Rev. E 64 (2001) 051708.
    189. S.K. Kundu, B.K. Chaudhuri, A. Seed, A. Ja’kli, Phys. Rev. E 67 (2003) 041704.
    190. S. Kaur, A.K. Thakur, R. Chauhan, S.S. Bawa, A.M. Biradar, J. Appl. Phys. 96 (2004) 2547.
    191. C.Y. Ho, J.Y. Lee, J. Appl. Polym. Sci. 100 (2006) 1688.
    192. Amrita Mukherjee, M. Rahman, S.S. Bhattacharyya, B.K. Chaudhuri, A. Yoshizawa, Chem. Phys. Lett. 443 (2007) 71.
    193. H.H. Liang, Y.Z. Xiao, F.J. Hsh, C.C. Wu, J.Y. Lee Liq. Cryst. 37 (2010) 255.
    194. C.Y. Ho, C.C. Chang, J.Y. Lee, J. Appl. Polym. Sci. 117 (2010) 3454.
    195. C.T. Liao, N.C. Wu, Z.L. Wu, J.Y. Liu, S.F. Zou, J. Y. Lee, J. Chin. Inst. Eng. (to be published) (2010).
    196. C.T. Liao, J.Y. Liu, M.H. Jiang, S.F. Zou, N.C. Wu, Z.L. Wu, J.Y. Lee, Mol. Cryst. Liq. Cryst. (to be published) (2010).
    197. C.T. Liao, Z.L. Wu, N.C. Wu, J.Y. Liu, M.H. Jiang, S.F. Zou, J. Y. Lee, Mol. Cryst. Liq. Cryst. (to be published) (2010).
    198. C.Y. Ho, L.S. Wang, F.H. Lin, J.Y. Lee, Liq. Cryst. (to be published) (2010).
    199. X.T. Li, A. Kawakami, H. Akiyama, S. Kobayashi, Y. Iimura, Jpn. J. Appl. Phys. 37 (1998) L743.
    200. Y.A. Nastishin, R.D. Polak, S.V. Shiyanovskii, Appl. Phys. Lett. 75 (1999) 202.
    201. T. Ito, K. Nakanishi, M. Nishikawa, Y. Yokoyama, Y. Takeuchi, J. Poly. 27 (1995) 240.
    202. W.J. Miller, N.L. Abbott, Langmuir 13 (1997) 7106.
    203. J.J. Ge, C.Y. Li, G. Xue, I.K. Mann, D. Zhang, S.Y. Wang, F.W. Harris, S.Z.D. Cheng, S.C. Hong, X. Zhuang, Y.R. Shen, J. Am. Chem. Soc. 123 (2001) 5678.
    204. H. H. Byoung, J. A. Han, J. R. Soon, S. C. Soo, and K. B. Hong, Langmuir 25 (2009) 8306.
    205. C.H. Chiang, S.Y.T. Tzeng, F.C. SIE, R.H. Huang, P.C. Wu, J.J. Wu, T.Y. Lin, A.S. Liu, L.H. Hsu, W.L. Liau, S. C. Len, Jpn. J. Appl. Phys. 46 (2007) 5917.
    206. E. Jakeman, E.P. Raynes, Phys. Lett. 39A (1972) 69.
    207. X. Nie, H. Xianyu, R.Lu, T.X. Wu, S.T. Wu, J. Display Technology 3, (2007) 280.
    208. M. Jiao, Z. Ge, Q. Song, S.T. Wu, Appl. Phys. Lett. 92 (2008) 061102.
    第六章 參考文獻
    1. P.J. Collings, Michael Hird, Introduction to Liquid Crystals Chemistry and Physics, Taylor & Francis, London, 1996.
    2. M.H. Li, V. Laux, H.T. Nguyen, G. Sigaud, P. Barois, N. Isaert, Liq. Cryst. 23 (1997) 389.
    3. I. Dierking, Liq. Cryst. 28 (2001) 165.
    4. 國立成功大學,物理研究所,博士學位論文,題目:聚合物穩定膽固醇液晶結構薄膜光電特性及繞射現象之研究,研究生:葛聰智,指導教授:傅永貴 (2002).
    5. 私立元智大學,化學工程與材料科學系,博士學位論文,題目:(向列型/圓盤型)和(向列型/旋光性物質)液晶複合系的相行為與光電特性的研究,研究生:陳文仁,指導教授:黃振球 (2005).
    6. J.B. Nwphew, T.C. Nihei, S.A. Carter, Phys. Rev. Lett. 80 (1998) 3276.
    7. X.T. Li, A. Kawakami, H. Akiyama, S. Kobayashi, Y. Iimura, Jpn. J. Appl. Phys. 37 (1998) L743.
    8. C.H. Chiang, S.Y.T. Tzeng, F.C. SIE, R.H. Huang, P.C. Wu, J.J. Wu, T.Y. Lin, A.S. Liu, L.H. Hsu, W.L. Liau, S. C. Len, Jpn. J. Appl. Phys. 46 (2007) 5917.

    QR CODE