簡易檢索 / 詳目顯示

研究生: 高義明
Hernan - Garron Leon
論文名稱: WiMax 通道估測之研究
A Research Study on Channel Estimation for WiMax
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 蔡長嵐
none
王信淵
none
張立中
Li-Chung Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 92
中文關鍵詞: OFDM通道估測minimum-mean-square-error (MMSE) 估測之方法decision-directed 估測方法
外文關鍵詞: OFDM, channel estimation, minimum-mean-square-error (MMSE) estimation, decision-directed estimation
相關次數: 點閱:209下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文針對802.16的OFDM系統來探討通道估測的問題。其中所考慮的通道模型包括延遲擴展與都普勒功率頻譜密度。因為利用preamble估測通道的方式不能用在資料傳輸,所以必須在每個OFDM symbol被接收時,重新作通道估測。在MMSE的通道估測中,接收端必須要得到某些通道的統計特性,而在先前的許多論文中已經針對在接收端已經知道通道統計特性的情況下,且在一個碼框的時間內,考慮非時變的通道來探討通道估測。本論文假設在接收端不知道通道統計特性的情況下,使用decision-directed(DD) MMSE的通道估測方式,且其允許使用在資料傳輸中。其利用每個碼框前的preamble來做通道估測,且用data-aided的估測方式來計算通道的統計特性。
      在本論文中已對DD-MMSE的估測方式,在許多的通道中做模擬。模擬結果顯示在延遲擴展較短時,可以得到較佳的系統效能。同時從模擬結果也可以得知,在較高的都普勒頻率時,DD-MMSE的估測方式不會受到其影響而使系統效能衰減。


    In this thesis, channel estimation for 802.16 OFDM systems is studied. The channel models considered in this thesis have both delay and Doppler power spectrum. In these cases, preamble-based channel estimation does not allow data transmission; hence a new estimate is required every time an OFDM symbol is received. For minimum-mean-square-error (MMSE) estimation, certain channel statistics are required for operation. Previous research papers have dealt with this topic under the assumptions of known channel statistics and time-invariant impulse response during a data frame. The decision-directed (DD) MMSE estimator allow data transmission even if channel statistics are not available to the user. The estimator employs the preamble of every frame and data-aided estimation for computation of the channel statistics.
    Simulation results are provided for DD-MMSE channel estimation in several channel conditions. A good performance if the channel delay spread is short. On the other hand, the simulation results also show that the performance of DD-MMSE channel estimation is not degraded by high Doppler frequencies.

    Chapter 1: OFDM systems and the 802.16 standard 1.1 Basic principles of OFDM systems 1.1.1 OFDM modulation/demodulation 1.1.2 Reducing computational complexity with the FFT/IFFT 1.1.3 The guard time and cyclic prefix 1.2 The IEEE 802.16d-2004 OFDM system 1.2.1 OFDM symbol description 1.2.2 OFDM symbol parameters defined by the 802.16 standard 1.2.3 Channel coding 1.2.4 Modulation 1.2.5 Frame structure and preamble 1.2.6 OFDM transceiver description Chapter 2: The wireless multipath channel 2.1 Description of the wireless multipath channel 2.1.1 Delay profile of the multipath channel 2.1.2 Time variation of the channel impulse response 2.2 Modified Stanford University Interim (SUI) channel models 2.2.1 Suburban path loss model 2.2.2 Fading characteristics 2.2.3 Parameters of the SUI channel models Chapter 3: Channel estimation for OFDM systems 3.1 Description of the channel estimation problem for OFDM systems 3.2 Maximum-likelihood detector for OFDM channel estimation 3.2.1 Channel estimation using a preamble 3.2.2 Channel estimation using pilot subcarriers 3.3 Other methods for OFDM channel estimation 3.3.1 Channel estimation using time-domain channel statistics 3.3.2 Channel estimation using frequency-domain channel statistics 3.3.3 Low-complexity ML channel estimation Chapter 4: Simulation results for 802.16 OFDM 4.1 Channel estimation using the downlink preamble 4.1.1 Performance of the ML estimator based on preamble for a time-invariant channel 4.1.2 Performance of the ML estimator in a time-variant channel 4.2 MMSE estimation for channels with high Doppler frequencies 4.2.1 Simulation procedure assuming known channel statistics 4.2.2 Simulation procedure without known channel statistics 4.3 Simulation results for several SUI channel models 4.3.1 3.5MHz bandwidth 4.3.2 1.75MHz bandwidth Conclusions References Appendixes Appendix A — MMSE and LS estimators using time-domain statistics Appendix B — Simulation results

    [1] van Nee, R., Prasad, R., OFDM for Wireless Multimedia Communications, Artech House, Boston, Massachusetts, USA, 2000.
    [2] Oppenheim, Alan V., Schafer, Ronald W., Discrete-Time Signal Processing, Prentice Hall, Englewood Cliffs, New Jersey, USA, 1989.
    [3] Chang, S.K., “IEEE 802.16 Technical Backgrounder”, Contribution IEEE 802.16-02/12r3, May 2002.
    [4] IEEE Standard 802.16-2004, IEEE Standard for Wireless Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems, October 2004.
    [5] Proakis, John G., Digital Communications, McGraw-Hill, fourth edition, 2001.
    [6] J. J. van de Beek, O. Edfors, M. Sandell, S.K. Wilson, and P.O. Börjesson, “On Channel Estimation in OFDM Systems,” Proceedings of the 45th IEEE Vehicular Technology Conference, Rosemont, Illinois, USA, pp. 715-719, July 1995.
    [7] Erceg, V. et al., “Channel Models for Fixed Wireless Applications”, Contribution IEEE 802.16a-03/01, June 2003.
    [8] Sklar, B., Digital Communications: Fundamentals and Applications, Prentice Hall, Englewood Cliffs, New Jersey, USA, 1988.
    [9] Scharf, L.L., Statistical Signal Processing: Detection, Estimation, and Time Series Analysis, Addison-Wesley, 1991.
    [10] O. Edfors, M. Sandell, J. J. van de Beek, S.K. Wilson, and P.O. Börjesson, “On OFDM Channel Estimation by Singular Value Decomposition,” IEEE Transactions on Communications, vol. 46, pp. 931-939, July 1998.
    [11] L. Deneire, P. Vandenameele, L. van der Perre, B. Gyselinckx, and M. Engels, “A Low-Complexity ML Channel Estimator for OFDM,” IEEE Transactions on Communications, vol. 51, pp. 135-140, February 2003.
    [12] Kaitz, T., “Interpolation effects for OFDM preamble”, Contribution IEEE 802.16abc-01/56, November 2001.
    [13] A. Ghosh, D. R. Wolter, J.G. Andrews, R. Chen, “Broadband Wireless Access with WiMax/802.16: Current Performance Benchmarks and Future Potential,” IEEE Communications Magazine, February 2005.
    [14] Mody, A.N., “Preamble Design for 802.16a/b SISO and MIMO OFDM systems”, Contribution IEEE 802.16abc-01/55, November 2001.
    [15] Meyr, H., Moeneclaey, M., Fechtel, S.A., Digital Communication Receivers: Synchronization, Channel Estimation and Signal Processing, John Wiley & Sons, Inc., Englewood Cliffs, New York, USA, 1998.
    [16] Haykin, S., Adaptive Filter Theory, Prentice Hall, Englewood Cliffs, New Jersey, USA, 1996.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE