研究生: |
歐陽儒 Ru Ou-Yang |
---|---|
論文名稱: |
嵌入無窮平板之兩孔洞承受機械負載下之應力分析 Stress Analysis of Two Holes Embedded in an Infinite Plate Subject to a Remote Uniform Load |
指導教授: |
趙振綱
Ching-Kong Chao |
口試委員: |
趙振綱
Ching-Kong Chao 徐慶琪 Ching-Chi Hsu 黃育熙 Yu-Hsi Huang |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 機械工程系 Department of Mechanical Engineering |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 解析連續 、交替法 、映射函數 |
外文關鍵詞: | Analytical continuation, Alternation method, Mapping function |
相關次數: | 點閱:419 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要在求解含兩孔洞之無窮平板承受機械負載之應力場,並計算孔洞邊界之切向應力。首先利用映射函數將兩並列孔洞轉換成同心圓孔洞,意旨由物理平面轉換至數學平面,再藉由解析連續以及交替法等方法,計算所需函數。研究中根據Muskhelishvili等向性二維彈性力學基本公式,藉由邊界上的應力連續以及位移連續之條件,利用交替法計算求得應力場。得到應力函數後,藉由應力公式計算孔洞邊界的切向應力,並探討改變孔距及施力方向對於切向應力之影響。孔洞的排列方向與負載的角度不同,隨著孔洞間距縮短時會有截然不同的趨勢,排列方向平行的情況中,孔距縮短使最大應力下降;排列方向垂直的情況中,孔距縮短使最大應力上升。應用在骨板上,減少各螺絲孔洞間的距離能有效減少最大應力,進而提升疲勞壽命。
The solution for the stress field of two holes embedded in an infinite plate subject to a remote uniform load is provided in this article. First, the mapping function is used to convert the two holes in the physical plane to the concentric holes in the mathematical plane, and then the stress functions can be obtained by analytical continuation theorem together with the alternation method. According to the basic formula of Muskhelishvili isotropic two-dimensional elasticity, the stress field is calculated by satisfying both the stress and displacement continuities across the boundary. The tangential stress on the hole boundary can then be obtained and the influence of changing the distance between two holes and the direction of a remote uniform load on the tangential stress is discussed in detail. The results presented in this study can be applied to the bone plate that decreasing the distance between the screw holes can effectively reduce the maximum stress, thereby increasing the fatigue life.
[1] Muskhelishvili, N. I. (1953). Some Basic Problems of the Mathematical Theory of Elasticity (Vol. 15). Groningen: Noordhoff.
[2] England, A. H., & Sih, G. C. (1972). Complex Variable Methods in Elasticity.
[3] Sendeckyj, G. P. (1971). Multiple circular inclusion problems in longitudinal shear deformation. Journal of Elasticity, 1(1), 83-86.
[4] Gong, S. X. (1995). Antiplane interaction among multiple circular inclusions. Mechanics Research Communications, 22(3), 257-262.
[5] Zhigang, S. (1989). Singularities interacting with interfaces and cracks. International Journal of Solids and Structures, 25(10), 1133-1142.
[6] Xiao, Z. M., & Chen, B. J. (2001). On the interaction between an edge dislocation and a coated inclusion. International Journal of Solids and Structures, 38(15), 2533-2548.
[7] Chao, C. K., & Kao, B. (1997). A thin cracked layer bonded to an elastic half-space under an antiplane concentrated load. International Journal of Fracture, 83(3), 223-241.
[8] Choi, S. T., & Earmme, Y. Y. (2002). Elastic study on singularities interacting with interfaces using alternating technique: Part II. Isotropic trimaterial. International Journal of Solids and Structures, 39(5), 1199-1211.
[9] Chao, C. K., Chen, F. M., & Lin, T. H. (2017). The stress field due to an edge dislocation interacting with two circular inclusions. Journal of Mechanics, 33(2), 161-172.
[10] Chao, C. K., Tseng, S. C., & Chen, F. M. (2018). Mode-III stress intensity factors for two circular inclusions subject to a remote uniform shear load. Journal of the Chinese Institute of Engineers, 41(7), 590-602.
[11] Chao, C. K., Chen, Y. L., Wu, J. M., Lin, C. H., Chuang, T. Y., & Lin, J. (2020). Contradictory working length effects in locked plating of the distal and middle femoral fractures―a biomechanical study. Clinical Biomechanics, 80, 105198.