簡易檢索 / 詳目顯示

研究生: 鄭振興
Chen-Hsing Cheng
論文名稱: 利用知識工程技術進行支撐結構設計評估與設計改善之研究
Evaluation and Improvement of Design of Supporting Structures using Knowledge Engineering Techniques
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 翁政義
none
陳義男
none
陳文華
none
王國雄
none
陳朝光
none
蔡明忠
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 203
中文關鍵詞: 疲勞分析有限元素法TRIZ層級程序分析法案例相似性代理人多層支撐結構設計工程知識編碼
外文關鍵詞: Finite Element Method, Fatigue Analysis, Analytical Hierarchy Process, Case-Based Similarity, TRIZ, Engineering Knowledge Coding, Multi-Layered Structure Design, Agent
相關次數: 點閱:229下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文首先提出利用多層代理人結合編碼模式,如此可快速輸入數據,進而求算門型結構之自然頻率與應力。此外又應用上述模式提出結合迴歸式之案例相似性計算方法,以快速搜尋案例庫資料並進行推論與應用。本文亦提出知識盤點以及關聯式知識庫之觀念,藉以讓使用者可以快速的搜尋所要的資料及知識,以利輸入需要的編碼,並進一步結合各代理人介面進行編碼應用,此亦有助於本文所發展的修正式層級程序分析法(Analytical Hierarchy Process, AHP)應用於支撐結構的技術及功能分析。本文發展的修正式AHP法,其創見為提出利用相關專利與技術文件,計算出各相關字詞出現次數及比值,再將其比值應用到AHP法的權重值,進而分析多層支撐結構相關設計技術及功能所採用設計決策之優先順序。透過此設計決策的優先順序之應用,可結合修正式TRIZ分群法,提出新的設計改善案例。
    本文在案例研究中,採多層代理人結合編碼模式,先以門型結構之橫樑工程知識編碼為例進行分析;修正式層級程序分析法則分別以門型結構、多層支撐結構之技術功能為例進行分析;而修正式AHP法與結合修正式TRIZ創新決策步驟,則以多層支撐結構設計為例,以結合結構佈置與局部加強之多層次設計考量,完成局部分隔之創新改善設計。最後整合本文上述之整體創新設計方法,針對船舶在波浪中之運動與受力反應,建立駛上駛下船舶三維多層支撐結構之疲勞強度快速模擬分析技術,進而以駛上駛下船舶結構為例,結合結構設計之局部加強、改變佈置、與挖孔等多層次技術考量,探討滿足降伏強度、挫曲、疲勞與輕量化之創新設計改善案例。


    This dissertation proposes the use of a model that involves a multi-layered agent combined with coding of engineering knowledge to enter the interface data rapidly, and further to calculate the stress and natural frequency of a door-shaped structure. This model is used to develop a case-based method that is combined with regression to calculate the similarity between desired structure and base structure in database. This method can rapidly find information, and make inferences for application to door-shaped structure. In relation to the model with the multi-layer agent combined with coding, this dissertation proposes the concepts of the knowledge audit and the relational knowledgebase. Users can exploit these concepts to find required information and knowledge more rapidly than that of traditional design, and thus easily enter the required knowledge codes. A modified analytical hierarchy process (AHP) method is developed to perform a functional analysis of supporting structures. The modified AHP method that is developed herein exploits an innovative approach of calculating the number of occurrences of related keywords and the ratio of the number of each related technique terms in the documents of related patents and techniques for evaluation of design priority. This ratio is applied as a base to the weighted value of technigue terms in the AHP method, and further analyzes the priority of design techniques and functions in design decisions that are related to a multi-layered supporting structure. This prioritization is used with the modified TRIZ clustering method to propose a new design improvement of supporting structures.
    In the case study, a model with a multi-layered agent that is combined with coding is utilized, and the engineering knowledge of a door-shaped structure is considered as an example to conduct an analysis of similarity. The modified AHP is analyzed by respectively taking the techniques for design priority associated with the functions of a door-shaped structure and a multi-layered supporting structure as examples. With respect to the modified AHP and the combined modified TRIZ innovative decision procedures, the design of a multi-layered supporting structure is considered as an example of the combination of a structure arrangement with the local reinforcement in multi-layered structure design. Finally, all of the aforementioned innovative methods are integrated. With reference to the motion of a ship in waves and its reaction to loads, this dissertation establishes rapid simulative analysis approach to evaluate the fatigue of a three-dimensional multi-layered supporting structure of the Roll on/Roll off (RO/RO) ship. It is further to consider the multi-layer supporting structure design improvement for a Roll on/Roll off ship, which involves arrangement change, local reinforcement and opening holes techniques to satisfy the yield strength, buckling properties, fatigue properties and light-weight design.

    中文摘要 I Abstract III 符號索引 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文獻回顧 2 1.4 研究方法 4 1.5 本文架構 5 第二章 相關理論介紹 7 2.1 多層代理人簡介 7 2.2 與多層代理人結合之工程知識編碼模式 10 2.3 關聯知識庫 12 2.4 案例相似性方法 13 2.4.1 案例式推理(Case-Based Reasoning)方法 13 2.4.2 結合迴歸之案例相似性(Case-Based Similarity)方法 14 2.5 基因演算法(Genetic Algorithm) 15 2.6 層級程序分析法(AHP) 16 2.6.1 傳統層級程序分析法 16 2.6.2 修正式層級程序分析法 17 2.7 萃思(TRIZ)技術與修正式分群法之創新設計方法 22 2.7.1 TRIZ理論基礎 22 2.7.2 修正式TRIZ分群法則 24 第三章 多層結構工程知識整合與創新設計方法 29 3.1 多層支撐結構之創新設計流程 29 3.2 門型多層支撐結構的知識架構 31 3.3 關聯式工程知識庫之建置 34 3.4 多代理人與多層支撐結構工程知識編碼 37 3.4.1 門型結構工程知識編碼 37 3.4.2 門型多層結構工程知識編碼 42 3.4.3 三維多層門型結構工程知識編碼與應用 47 3.5 計算分析之相關工程知識 57 3.5.1 門型支撐結構相關理論公式 57 3.5.2 駛上駛下船舶相關理論公式與工程知識 58 3.6 利用案例相似性推論法進行頻率與應力計算 78 3.7 結合細部參數進行輕量化設計 81 3.8 利用介面整合技術進行疲勞強度分析 81 3.8.1 疲勞強度分析方法與步驟 81 3.8.2 局部邊界條件之決定與轉換函數之計算 89 3.9 結合修正式AHP法與修正式TRIZ分群發明法進行多層支撐結構之創新設計 94 第四章 多層支撐結構之創新設計改善應用案例 97 4.1 案例1:門型結構橫樑工程知識結合代理人進行編碼與案例相似性以及輕量化之應用 97 4.1.1 門型結構橫樑案例說明與迴歸相似性案例之應用 97 4.1.2 門型結構橫樑輕量化分析之應用 102 4.1.3 結果討論 104 4.2 案例2:門型結構知識架構結合修正式AHP法之設計決策應用 105 4.2.1 門型結構知識盤點結果 105 4.2.2 關聯知識庫之建立 109 4.2.3 修正式AHP法之應用例 111 4.2.4 結構設計改善案例 114 4.2.5 結果討論 118 4.3 案例3:利用修正式AHP法結合修正式TRIZ分群法進行多層橫肋結構輕量化創新設計及分析驗證 120 4.3.1 多層橫肋結構知識架構與設計技術之相對重要度評估 120 4.3.2 利用修正式AHP法與有限元素法進行挫曲及降伏強度評估 124 4.3.3 結合修正式AHP法與TRIZ特徵群組進行多層結構之創新設計改善 131 4.3.4 結果討論 135 4.4 案例4:結合工程知識編碼及代理人之駛上駛下船的工程知識架構關聯性與局部結構疲勞強度分析 137 4.4.1 駛上駛下船之三維多層工程知識編碼 137 4.4.2 駛上駛下船之工程知識架構與關聯式工程知識欄位規劃 138 4.4.3 駛上駛下船之傳統結構強度分析 142 4.4.4 局部結構疲勞強度分析 149 4.4.5 結果討論 158 4.5 案例5:應用修正式AHP法結合修正式TRIZ分群法進行駛上駛下船之三維多層結構設計之整合應用 159 4.5.1 多層結構工程知識編碼與知識庫之規劃建置 159 4.5.2 三維多層支撐結構工程知識編碼 162 4.5.3 應用修正式AHP法結合修正式TRIZ分群法進行滿足降伏、挫曲、疲勞與輕量化之三維結構設計 166 4.5.4 結果討論 193 第五章 結論與建議 194 5.1 結論 194 5.2 建議 196 參考文獻 197 作者簡介 203 國立臺灣科技大學博碩士論文授權書

    [1]Chapman, C. B., and Pinfold, M., “Design engineering- a need to rethink the solution using knowledge based engineering,” Knowledge-Based Systems, vol.12, pp.257-267 (1999).
    [2] Jones, P. L., and Harrison, A., “ The application of knowledge-based techniques to the monitoring of computers in a large heterogeneous distributed environment,” Knowledge-Based Systems, vol.19, pp.565-575 (2006).
    [3]Miyamoto, S. , Nonoguchi, S., Matsuno, J. and Matsumura, T., “Application of Knowledge Based Modeling to Detail Structure Design for Shipbuilding,” ICCAS 2002, pp.717-729 (2002).
    [4]Zhang, W. J. and Zhang, D., “A general Methodology for Developing Intelligent CAE System- a model based reasoning approach,” Journal of Materials Processing Technology , vol.61, pp.148-153 (1996).
    [5]Li, Q. and Zhang, W. J., “Application of model-based reasoning to the development of intelligent CAE systems,” Engineering Applications of Artificial Intelligence , vol.11, pp.327-336 (1998).
    [6] Bravo-Aranda, G., Hernandez-Rodriguez, F. and Navarro, A. M., “Knowledge-based system development for assisting structural design,” Advances in Engineering Software , vol.30, pp.763-774 (1999).
    [7] Mezaris, V., Boulgouris, N. V. and Kompatsiaris, I., “Knowledge-Assisted Video Analysis for Content-Adaptive Coding and Transmission,” IEEE (2006).
    [8] Wang, S. L., Xia,H., Liu, F., Tao, G. B. and Zhang, Z., “Agent-based modeling and mapping of a manufacturing system,” Journal of Materials Processing Technology , vol.129, pp.518–523 (2002).
    [9] Yang, J. T. D. and Lin, C. H. T., “An Agent-Based Knowledge System for Lesson Plans,” Dept. of General Literacy, NKNU (2002).
    [10] Saaty, T. L.. The Analytic Hierarchy Process, McGraw-Hill, New York (1980).
    [11] Saaty, T. L., “Automatic Decision-Making: Neural Firing and Response,” Journal of System Science and System Engineering, vol.13, no.4, pp.385-404 (2004).
    [12] Feng, Y. H., Teng, T. H., and Tan, A. H., “Modeling situation awareness for Context-aware Decision Support,” Expert Systems with Applications, vol.36, pp.455-463 (2009).
    [13]Chen, C. C. and Lin, C. S., “A GA-based Nearly Optimal Image Authentication Approach,” International Journal of Innovative Computing, Information and Control, vol.3, no.3, pp.631-640 (2007).
    [14]The trial version of CREAX INNOVATION SUITE 3.1. http://www.creax. com/trialVersion/evaluation.html/
    [15] Chang, H. T., and Chen, J. L. “An Approach Combining Extension Method with TRIZ for Innovative Product Design,” Journal of the Chinese Society of Mechanical Engineers, vol.25, no.1, pp.13-22 (2004).
    [16] Chang, H. T., and Chen, J. L., “The conflict-problem-solving CAD software integrating TRIZ into eco-innovation,” Advances in Engineering Software, vol.35, pp.553-566 (2004).
    [17] Wang, H., Chen, G., Lin, Z., and Wang, H., “Algorithm of integrating QFD and TRIZ for the innovative design process,” International Journal of Computer Applications in Technology, vol.23, issue 1, pp.41-52 (2005).
    [18] Lin, Z. C., and Chen, C. C., “Innovation Procedure for Polishing Times Calculations of Compensated CMP Using Multiple Steps of the Modified TRIZ Method,” International Journal of Innovative Computing, Information and Control, vol.5, no.8, pp.2311-2332 (2008).
    [19] Choy, S. Y., Lee, W. B. and Cheung, C. F., “Development of a Knowledge Management Culture Assessment Tool with Applications in Aviation Industry,” Journal of Information & Knowledge Management, vol. 4, no. 3, pp.179-189 (2005).
    [20] Michailova, S. and Gupta, A., “Knowledge Sharing in Consulting Companies: Opportunities and Limitations of Knowledge Codification,” Journal of Information & Knowledge Management, vol. 4, no. 3, pp.201-212 (2005).
    [21] Raju, I. S., Glaessgen, E. H., Mason, B. H., Krishnamurthy, T., and Davila, C. G. , “Structural Analysis of the Right Rear Lug of American Airlines Flight 587,” CMES: Computer Modeling in Engineering & Sciences, vol.22, no.1, pp.1-30 (2007).
    [22] Alaimo, A. , Milazzo, A. , and Orlando, C., “Global/Local FEM-BEM Stress Analysis of Damaged Aircraft Structures,” CMES: Computer Modeling in Engineering & Sciences: Computer Modeling in Engineering & Sciences, vol.36, no.1, pp.23-41(2008).
    [23] Lin, G., Liu, Y., and Xiang, Z., “Computational Framework for Durability Design and Assessment of Reinforced Concrete Structures Exposed to Chloride Environment,” CMES: Computer Modeling in Engineering & Sciences, vol.47, no.3, pp.217-251(2009).
    [24]Lloyd’s Register of Shipping, “Rules and regulations for the classification of ships,” July (2000).
    [25]Det Norske Veritas, “Fatigue assessment of ship structures, ” Classification notes, no.30.7, Sep. (1998).
    [26] Tanskanen, P., “The evolutionary structural optimization method: theoretical aspects,” Computer Methods in Applied Mechanics and Engineering, vol. 191, issues 47-48, pp. 5485-5498 (2002).
    [27] Hughes, O. F., Ship Structural Design: A Rationally-Based, Computer- Aided, Optimization Approach, John Wiley & Sons, New York (1983).
    [28]Wooldridge, M., and Jennings, N. R., “Intelligent agents: Theory and practice,” The Knowledge Engineering Review, 10(2), pp.115-152, (1995).
    [29] Liu, S., “Applying Intelligent Agents in the Scanning and Interpretation of Strategic Data,” TUCS Technical Report, no.85 (1996).
    [30] 蕭淳豐,「網路教學平台下的訊息代理人實作」,碩士論文,高雄師範大學,高雄 (2001)。
    [31] Ferber, J., Multi-Agent Systems:An Introduction to distributed Artificial intelligence, Addison-Wesley, New York (1999).
    [32] Durfee, E. H., Lesser, V.R., and Corkill, D. D. “Trends in Cooperative Distributed Problem Solving,” IEEE Transactions on Knowledge and Data Engineering, vol. 1, no. 1, pp. 63-83, March (1989).
    [33] Wooldridge, M., Sycara, K., and Jennings, N. R. “A Roadmap of Agent Research and Development. Autonomous Agents and Multi-agent Systems,” Kluwer Academic Publishers, Boston, vol.1, pp.275-306 (1998).
    [34] Agent Construction Tools, http://www.agentbuilder.com/AgentTools/
    [35] Bellifemine, F., Caire, G., Trucco, T., and Rimassa, G., “JADE Programmer’s Guide”, CSELT S.p.A., 2003. http://jade.cselt.it/.
    [36] Chan, C. W. and Johnston, M., “Knowledge modeling for constructing an expert system to support reforestation decisions ,” Knowledge-Based Systems, vol.9, pp.41-59 (1996).
    [37] Watson, I., “Case-Based Reasoning is a Methodology not a Technology,” Knowledge-Based Systems, vol.12, pp.301-308 (1999).
    [38] Chen, P. K. and Chang, H. C., “Large-Scale Economic Dispatch by Genetic Algorithm,” IEEE Trans. on Power Systems, vol.10, issue 4, pp.1919-1925 (1995).
    [39]Rantanen, K. and Domb, E.,“Simplified TRIZ”, St. Lucie Press, CRCPress. (2002).
    [40] Altshuller, G., 40 principles, Technical Innovation Center, Inc. Worcester, MA, (1997).
    [41] Veritec, Marine Technology Consultants. VIBRATION CONTROL IN SHIPS (1985).
    [42]Det Norske Veritas, “Strength analysis of hull structure in Tankers ,” DNV Classification notes, Oct. (1988).
    [43]Det Norske Veritas, “Strength analysis of hull structure in ROLL ON/ROLL OFF SHIPS,” DNV Classification notes, MAY (1980).
    [44]海文堂,造船設計便覽,第4版,關西造船協會編,日本,pp.70- 79.
    [45]Edward, V. Lewis, Editor, “Principles of Naval Architecture, Volume III, Motion in Waves and Controllability,” SNAME, Jersey City, NJ (1989).
    [46]BISHOP, R. E. D.,and PRICE, W. G., “Hydro-elasticity of ships,” University College London, April (1978).
    [47] Alfred, I. R., “PROGRAM SCORES-SHIP STRUCTURAL RESPONSE IN WAVES,” Report SSC-230, Ship Structure Committee (1972).
    [48] Chen, H. H., “ABS/SHIPMOTION PROGRAM-THEORY,” ABS Ocean Engineering Division Computer Program Document, OE-5046-2, USA (1980).
    [49] 鄭振興、吳華桐,”各型設計波譜特性之探討”,第十四屆造船及輪機工程研討會,臺北,臺灣(2002)。
    [50] 財團法人聯合船舶設計發展中心,「排水型船舶動態負荷分佈研究」,專題研究報告,臺北,臺灣(1994)。
    [51] Det Norske Veritas, ”Fatigue assessment of ship structures ,” Classification notes, no.30.7, Sep. (1998).
    [52] Det Norske Veritas, ”Fatigue Strength Analysis for Mobile Offshore Units,” Classification notes, no.30.2, Aug. (1984).

    QR CODE