簡易檢索 / 詳目顯示

研究生: 黃貫庭
Kuan-Ting Huang
論文名稱: 利用有限元素法探討克氏針固定治療於拇趾外翻第一蹠骨截骨術之生物力學研究
Biomechanical Investigation of First Metatarsal Osteotomy with Kirschner Wire Fixation for Hallux Valgus Treatment Using Finite Element Method
指導教授: 趙振綱
Ching-Kong Chao
徐慶琪
Ching-Chi Hsu
口試委員: 趙振綱
Ching-Kong Chao
徐慶琪
Ching-Chi Hsu
釋高上
Kao-Shang Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 100
中文關鍵詞: 拇趾外翻克氏針固定截骨面接觸壓力有限元素分析
外文關鍵詞: Hallux Valgus, Kirschner Wire fixation, Contact pressure on the osteotomy plan, Finite elements analysis
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前拇趾外翻在先前的手術治療研究中只有探討手術固定板的治療方法,並沒有文獻是針對Kirschner Wire來做更進一步的探討,因此本研究的目的是建立一個完整膝下骨骼肌肉模型與植入物模型,並透過有限元素法探討拇趾外翻治療之骨科力學評估。
    本研究使用Solidworks建立完整膝下模型、截骨術植入物及遠近端截骨術模型,接著使用ANSYS Workbench 19.2 進行模擬。本研究主要探討遠端及近端截骨術,配合不同方法、角度、深度的Kirschner Wire固定方法,以正常站立及前足站立負載模擬,比較其穩定度、蹠骨應力、植入物應力、截骨面的正向壓力。
    克氏針打入之深淺結果顯示,打入至後方楔形骨會使第一蹠骨應力些微提升及植入物應力大幅提升,但截骨面之正向壓力卻反之下降。而在第一蹠骨截骨術整體評比中顯示出遠端截骨術單支固定-淺(DSS)擁有最好的手術穩定度、骨頭較不易破裂、植入物較不易破壞及有良好的截骨面接觸壓力能促使手術截面癒合。
    結論得出克氏針打入之深淺在本研究中顯示打入至後方楔形骨(深)較差,而透過近端截術正規化評比可以得出DSS擁有最好的優勢,但實際情況中若第一蹠骨角度偏差太大無法使用遠端截骨術,則本研究指出近端截骨術大角度交叉-淺(PLCS),在近端截骨術中擁有較好的優勢。


    Hallux valgus is one of the most common foot deformity, which caused the dislocation of the metatarsophalangeal joint (MTP). Over a hundred different types of operations have been described for the treatment of hallux valgus. However, there are no studies specifically investigating the Kirschner wire fixation. The purpose of this study was to develop a three-dimensional human musculoskeletal lower extremity model to investigate the different types of Kirschner wire fixation for hallux valgus by using finite element (FE) method with motion analysis.
    Three-dimensional human musculoskeletal lower extremity models with ten types of Kirschner wire fixation were developed using SolidWorks. Ten types of Kirschner wire fixation consider different method, depth, angle of Kirschner wire on proximal and distal osteotomy. In this study, 20 FE analyses were conducted using ten types of tread pattern design with two positions: standing position and forefoot standing. The FE simulations were performed by using the ANSYS Workbench 19.2. In post-processing, the fixation stability, the contact pressure of the osteotomy plan, the stress of metatarsal and implants were calculated to evaluate the performances of Kirschner wire fixation.
    The results showed that the shallow fixation method had lower first tibia and implant stress than that of the deep fixation method both in proximal and distal osteotomy. For the results of contact pressure on the osteotomy plane, the shallow fixation method had higher value of contact pressure than that of the deep fixation method. Normalization method was applied for evaluating the performance of ten types fixations with four indicators. The normalizing results showed that the distal osteotomy single-short (DSS) had the best advantage of fixation performance in metatarsal osteotomy.
    In conclusion, the results of this study suggest that cuneiform fracture and fixation failure were more likely to occur in the case of deep fixation method. The normalizing results revealed that DSS had the best advantage of fixation performance than others in distal osteotomy. This study can provide useful information for surgeons to understand the biomechanics of Kirschner wire fixation.

    摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xii 第一章 緒論 1 1.1 動機與目的 1 1.2 下肢介紹 2 1.2.1 下肢骨結構 3 1.2.2 下肢肌肉 4 1.2.3 下肢韌帶 6 1.3 拇趾外翻非手術治療介紹 8 1.4 拇趾外翻手術介紹 9 1.5 術後固定鞋介紹 14 1.6 足部生物力學演進 16 1.6.1 機械測試 16 1.6.2 電腦模擬 18 1.7 本文架構 23 第二章 材料與方法 24 2.1 下肢骨骼肌肉模型及植入物建立 24 2.1.1 下肢骨骼模型建立 24 2.1.2 下肢肌肉模型建立 25 2.1.3 拇趾外翻模型建立 27 2.1.4 第一蹠骨截骨術模型建立 30 2.1.5 植入物模型建立 33 2.1.6 手術模型建立 34 2.2 有限元素模擬分析 45 2.2.1 材料參數設定 45 2.2.2 韌帶系統建立 46 2.2.3 網格元素 50 2.2.4 邊界與負載條件 52 2.3 數值模擬生物力學評估 54 第三章 結果 55 3.1 收斂性分析結果 55 3.2 第一蹠骨近端截骨術結果 58 3.2.1 近端截骨術穩定度結果 58 3.2.2 近端截骨術第一蹠骨應力結果 60 3.2.3 近端截骨術植入物應力結果 62 3.2.4 近端截骨術截骨面接觸壓力結果 64 3.3 第一蹠骨遠端截骨術結果 66 3.3.1 遠端截骨術第一蹠骨穩定度結果 66 3.3.2 遠端截骨術第一蹠骨應力結果 68 3.3.3 遠端截骨術植入物應力結果 70 3.3.4 遠端截骨術截骨面接觸壓力結果 72 第四章 討論 74 4.1 近端截骨術結果 74 4.2 遠端截骨術結果 76 4.3 遠近端截骨術結果總比 77 4.4 研究限制 79 第五章 結論 80 5.1 結論 80 5.2 未來展望 81 參考文獻 82

    [1] R. A. Mann and M. J. Coughlin, "Hallux valgus--etiology, anatomy, treatment and surgical considerations," Clinical orthopaedics and related research, no. 157, pp. 31-41, 1981.
    [2] M. Glynn, J. Dunlop, and D. Fitzpatrick, "The Mitchell distal metatarsal osteotomy for hallux valgus," The Journal of bone and joint surgery. British volume, vol. 62, no. 2, pp. 188-191, 1980.
    [3] V. John, K. K. Panagiotis, V. Polizois, E. S. Dimitrios, and P. G. Spyridon, "Preservation of the length of the first metatarsal after modified Mitchell’s osteotomy for hallux valgus deformity. Overview, technique and preliminary results," Clin Res Foot Ankle, vol. 3, no. 164, p. 2, 2015.
    [4] N. Wülker and F. Mittag, "The treatment of hallux valgus," Deutsches Ärzteblatt International, vol. 109, no. 49, p. 857, 2012.
    [5] J. W. Gallentine, J. K. DeOrio, and M. J. DeOrio, "Bunion surgery using locking-plate fixation of proximal metatarsal chevron osteotomies," Foot & ankle international, vol. 28, no. 3, pp. 361-368, 2007.
    [6] J. Kennedy, A. Berg, L. Welsh, and J. Mehta, "Single incision lateral release for hallux valgus using a cervical biopsy blade: A cadaveric study," The Foot, vol. 36, pp. 35-38, 2018.
    [7] N. Şahin, G. Cansabuncu, N. Çevik, O. Türker, G. Özkaya, and Y. Özkan, "A randomized comparison of the proximal crescentic osteotomy and rotational scarf osteotomy in the treatment of hallux valgus," Acta orthopaedica et traumatologica turcica, vol. 52, no. 4, pp. 261-266, 2018.
    [8] J. Y. Choi, J. M. Lee, and J. S. Suh, "Shortening Proximal Chevron Metatarsal Osteotomy for Patients With a Hallux Valgus Deformity With Advanced Arthritis," The Journal of Foot and Ankle Surgery, 2019.
    [9] K. B. Lee, M. S. Kim, K. S. Park, and G. W. Lee, "Importance of postoperative sesamoid reduction on the outcomes of proximal chevron osteotomy for moderate to severe hallux valgus deformity," Foot and Ankle Surgery, 2018.
    [10] B. Magnan, S. Negri, T. Maluta, C. Dall’Oca, and E. Samaila, "Minimally invasive distal first metatarsal osteotomy can be an option for recurrent hallux valgus," Foot and Ankle Surgery, 2018.
    [11] B. Mavčič, "Geometric analysis of indications for minimally invasive distal metatarsal osteotomy in treatment of hallux valgus," Journal of orthopaedic surgery and research, vol. 10, no. 1, p. 163, 2015.
    [12] MedicineNet. (2019). Medical Definition of Skeleton, bones of the [Online]. Available: https://www.medicinenet.com/script/main/art.asp?articlekey=8642.
    [13] H. Kura, Z. P. Luo, H. B. Kitaoka, and K. N. An, "Quantitative analysis of the intrinsic muscles of the foot," The Anatomical Record: An Official Publication of the American Association of Anatomists, vol. 249, no. 1, pp. 143-151, 1997.
    [14] WebMD. (1994-2019). Ankle Joint Anatomy [Online]. Available: https://emedicine.medscape.com/article/1946201-overview.
    [15] Hallufix. (2019). Hallufix for bunion pain (Hallux valgus) [Online]. Available: https://www.hallufix.com.tw/.
    [16] L. Shanghai Saychum Gift Co. (1998-2019). Corrector Bursitis Orthopedic Insoles Hallux Valgus Separator Sholl Silicone Insoles Pedicure Socks Gel Insoles for Shoes [Online]. Available: https://saychum.en.made-in-china.com/productimage/VjgQNfdTZikc-2f1j00dRyYIwHGbfoV/China-Corrector-Bursitis-Orthopedic-Insoles-Hallux-Valgus-Separator-Sholl-Silicone-Insoles-Pedicure-Socks-Gel-Insoles-for-Shoes.html.
    [17] C. L. Mitchell, J. L. Fleming, R. Allen, C. Glenney, and G. A. Sanford, "Osteotomy-bunionectomy for hallux valgus," JBJS, vol. 40, no. 1, pp. 41-60, 1958.
    [18] K. A. Johnson, R. H. Cofield, and B. F. Morrey, "Chevron osteotomy for hallux valgus," Clinical orthopaedics and related research, no. 142, pp. 44-47, 1979.
    [19] R. A. Mann, S. Rudicel, and S. Graves, "Repair of hallux valgus with a distal soft-tissue procedure and proximal metatarsal osteotomy. A long-term follow-up," The Journal of bone and joint surgery. American volume, vol. 74, no. 1, pp. 124-129, 1992.
    [20] N. Shibuya, E. M. Kyprios, P. N. Panchani, L. R. Martin, J. C. Thorud, and D. C. Jupiter, "Factors associated with early loss of hallux valgus correction," The Journal of Foot and Ankle Surgery, vol. 57, no. 2, pp. 236-240, 2018.
    [21] E. So, B. Van Dyke, M. R. McGann, R. Brandao, D. Larson, and C. F. Hyer, "Structures at Risk From an Intermetatarsal Screw for Lapidus Bunionectomy: A Cadaveric Study," The Journal of Foot and Ankle Surgery, vol. 58, no. 1, pp. 62-65, 2019.
    [22] DARCO. (2019). Postoperative Shoe [Online]. Available: http://www.darcointernational.com/medsurg.
    [23] S. M. Rush, J. C. Christensen, and C. H. Johnson, "Biomechanics of the first ray. Part II: metatarsus primus varus as a cause of hypermobility. A three-dimensional kinematic analysis in a cadaver model," The Journal of foot and ankle surgery, vol. 39, no. 2, pp. 68-77, 2000.
    [24] M. Earll, J. Wayne, P. Caldwell, and R. Adelaar, "Comparison of two proximal osteotomies for the treatment of hallux valgus," Foot & ankle international, vol. 19, no. 7, pp. 425-429, 1998.
    [25] K. H. Kristen, K. Berger, C. Berger, W. Kampla, W. Anzböck, and S. Weitzel, "The first metatarsal bone under loading conditions: a finite element analysis," Foot and ankle clinics, vol. 10, no. 1, pp. 1-14, 2005.
    [26] S. P. Budhabhatti, A. Erdemir, M. Petre, J. Sferra, B. Donley, and P. R. Cavanagh, "Finite element modeling of the first ray of the foot: a tool for the design of interventions," Journal of biomechanical engineering, vol. 129, no. 5, pp. 750-756, 2007.
    [27] C. Matzaroglou, P. Bougas, E. Panagiotopoulos, A. Saridis, M. Karanikolas, and D. Kouzoudis, "Ninety-degree chevron osteotomy for correction of hallux valgus deformity: clinical data and finite element analysis," The open orthopaedics journal, vol. 4, p. 152, 2010.
    [28] D. W. C. Wong, Y. Wang, M. Zhang, and A. K. L. Leung, "Functional restoration and risk of non-union of the first metatarsocuneiform arthrodesis for hallux valgus: a finite element approach," Journal of biomechanics, vol. 48, no. 12, pp. 3142-3148, 2015.
    [29] additively. (2018). Geomagic Freeform/ Geomagic Freeform Plus [Online]Available: https://www.additively.com/en/products/geomagic-freeform-geomagic-freeform-plus-antonius-koester-gmbh-co-kg.
    [30] C. H. Lee, C. M. Shih, K. C. Huang, K. H. Chen, L. K. Hung, and K. C. Su, "Biomechanical analysis of implanted clavicle hook plates with different implant depths and materials in the acromioclavicular joint: a finite element analysis study," Artificial organs, vol. 40, no. 11, pp. 1062-1070, 2016.
    [31] W. P. Chen, F. T. Tang, and C. W. Ju, "Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis," Clinical Biomechanics, vol. 16, no. 7, pp. 614-620, 2001.
    [32] R. Mao, J. Guo, C. Luo, Y. Fan, J. Wen, and L. Wang, "Biomechanical study on surgical fixation methods for minimally invasive treatment of hallux valgus," Medical engineering & physics, vol. 46, pp. 21-26, 2017.
    [33] D. W. C. Wong, M. Zhang, J. Yu, and A. K. L. Leung, "Biomechanics of first ray hypermobility: an investigation on joint force during walking using finite element analysis," Medical engineering & physics, vol. 36, no. 11, pp. 1388-1393, 2014.
    [34] E. Morales-Orcajo, J. Bayod, R. Becerro-de-Bengoa-Vallejo, M. Losa-Iglesias, and M. Doblare, "Influence of first proximal phalanx geometry on hallux valgus deformity: a finite element analysis," Medical & biological engineering & computing, vol. 53, no. 7, pp. 645-653, 2015.

    無法下載圖示 全文公開日期 2024/07/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE