簡易檢索 / 詳目顯示

研究生: 黃俊傑
Jyun-Jie Huang
論文名稱: 鹼激發爐灰混凝土新拌性質之研究
Study on Fresh Properties of Alkali-activated Concrete with Slag and Fly Ash
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 徐輝明
none
張建智
none
施正元
none
鄭敏元
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 137
中文關鍵詞: 水淬爐石粉飛灰鹼激發爐灰混凝土耐久性
外文關鍵詞: slag, fly ash, alkali-activated concrete, durability
相關次數: 點閱:326下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究係以矽酸鈉及氫氧化鈉溶液為鹼性激發劑,經試拌後決定於固定液固比為0.5,藉由改變鹼激發量、矽鈉比及水淬爐石粉與飛灰混合比,以探討各參數對於鹼激發爐灰混凝土新拌、物理性質、耐久性及微觀性質之影響。
研究結果顯示:(1)新拌性質方面,鹼激發爐灰混凝土坍度在220 mm至270 mm之間;坍流度在360 mm至600 mm之間;初凝與終凝時間分別為529~684分鐘與556~745分鐘之間,增加鹼激發量對於工作性及凝結時間並無明顯變化。(2)鹼激發爐灰混凝土含氣量在0.3~2.8%之間,增加鹼激發量與矽鈉比,含氣量皆會下降。(3)鹼激發爐灰混凝土28天齡期抗壓強度在21.43~48.03 MPa之間,增加溶液鹼濃度可提升材料強度,但因飛灰為惰性材料使得飛灰組別強度皆低於純水淬爐石粉組別,50%飛灰混合降低28天抗壓強度13.1~38.3%之間。(4)全試驗組鹼激發爐灰混凝土熱傳導係數範圍在1.227~1.854 w/m·k之間,低於一般傳統混凝土約18.2~47%,顯示鹼激發爐灰混凝土具良好隔熱性能,且粉體種類對於材料熱傳導係數值之影響性大於溶液配比因子。(5)鹼激發爐灰混凝土長度變化量結果顯示,鹼溶液參數中矽鈉比與鹼激發量增加皆會提高材料長度變化量。(6)鹼激發爐灰混凝土表面電阻率結果顯示,矽鈉比與鹼激發量增加皆會提高混凝土表面電阻率。(7) 鹼激發爐灰混凝土吸水率結果顯示,矽鈉比與鹼激發量增加皆會降低混凝土吸水率,吸水率愈大則混凝土內部孔隙愈多。


In this study, the sodium silicate and sodium hydroxide were used as the alkali activator. After trial mixes, the liguid-solid ratio was fixed as 0.5, and the experimental parameters including different dosages of activator, silicon-sodium ratio and proportions of slag-fly ash mixtures were used to investigate the effects of various combinations of parameters on the fresh, physical, durable and microstructural properties of the alkali-activated concrete with slag and fly ash.
The research results show that: (1) For the fresh properties, the slump of alkali-activated slag-fly ash concrete were in the range from 220 to 270 mm, and the slump flow were in the range from 360 to 600 mm, and the initial and finial setting times of concrete were from 529 to 684 and 556 to 745 min, respectively. Increase of dosages of activator could not significantly change the workability and setting times. (2) The air content of alkali-activated slag-fly ash concrete was in the range from 0.3 to 2.8 %. Increase of dosages of activator and silicon-sodium ratio could decrease the air content. (3) The increase of dosages of activator could enhance the material strength such that the compressive strength of all mixture at 28 days were in the range from 21.43 to 48.03 MPa. However, when the slag powder mixed with fly ash being the inert ingrident, the concrete had lower compressive strength at 28 days by a decreaseof 13.1 to 38.3% if the amount of fly ash replacement replaced 50 wt. % of slag. (4) The thermal conductivities of all mixtures were in range from 1.227 to 1.854 w/m•k, which were lower than these of normal concrete by 18.2 to 47 %, that in turn showed that thealkali-activated slag-fly ash concrete had much better insulation properties. In addition, the properties of thermal conductivity were primarily controlled by composition of powder material rather than by the mixing liquid. (5) The increase of dosages of activator and and silicon-sodium ratio could increase the drying shrinkage of alkali-activated slag-fly ash concrete. (6) The increase of dosages of activator and and silicon-sodium ratio could increase the surface resistivity of alkali-activated slag-fly ash concrete. (7) The increase of dosages of activator and and silicon-sodium ratio could reduce the water absorption of alkali-activated slag-fly ash concrete. The higher the water absorption is, the higher the internal voids of concrete will be.

摘要 Abstract 致謝 總目錄 表目錄 圖目錄 第一章 緒論 1-1 研究動機 1-2 研究目的 1-3 研究內容與流程 第二章 文獻回顧 2-1 前言 2-2 鹼激發材料源起 2-3 鹼激發基礎材料 2-3-1 水淬爐石粉 2-3-2 飛灰 2-4 鹼激發水淬爐石粉反應機制 2-4-1 水化反應影響因子 2-4-2 水化反應機制與水化反應物 2-4-3 鈣與鋁元素之影響 2-5 鹼激發材料配比因子 2-5-1 鹼激發溶液 2-5-2 鹼激發溶液濃度 2-5-3 混合鹼激發溶液影響 2-5-4 水淬爐石粉-飛灰混合型鹼激發材料 2-6 鹼激發材料流動性 第三章 試驗計畫與流程 3-1 試驗內容與流程 3-2 試驗材料 3-3 試驗變數與項目 3-3-1 試驗內容範圍 3-3-2 試驗變數與項目 3-4 試驗拌合說明 3-5 試驗方法 3-5-1 粒料基本性質試驗 3-5-2 新拌性質試驗 3-5-3 物理性質試驗 3-5-4 耐久性試驗 3-5-5 微觀分析試驗 3-6 試驗儀器與設備 3-6-1 粒料基本性質儀器 3-6-2 新拌試驗儀器 3-6-3 物理性質試驗儀器 3-6-4 耐久性試驗儀器 3-6-5 微觀試驗儀器 第四章 鹼激發爐灰混凝土試驗結果與分析 4-1 混凝土新拌性質 4-1-1坍度 4-1-2坍流度 4-1-3凝結時間 4-1-4含氣量 4-2鹼激發爐灰混凝土物理性質 4-2-1抗壓強度 4-2-2超音波速 4-2-3動態彈性模數 4-2-4熱傳導係數 4-3鹼激發爐灰混凝土耐久性質 4-3-1長度變化量 4-3-2表面電阻率 4-3-3吸水率 4-4鹼激發爐灰混凝土微觀性質 4-4-1 掃描式電子顯微鏡 (SEM) 4-1-2 元素分析 (EDS) 第五章 結論與建議 5-1結論 5-2建議 參考文獻

[1] V.M.M.P.K. Malhotra, High-performance, high-volume fly ash concrete : materials, mixture proportioning, properties, construction practice, and case histories, Supplementary Cementing Materials for Sustainable Development Inc., Ottawa, 2005.
[2] B.V.H. Rangan, D., Development and properties of low calcium fly ash based geopolymer concrete, Faculty of Engineering, Curtins University of Technology, Perth, Australia, 2005.
[3] M.T. Taylor, C. ;Gielen, D., Energy efficiency and CO2 emissions from the global cement industry, Energy Efficiency and CO2 Emission Reduction Potentials and Policies in the Cement Industry, International Energy Agency, Paris, 2006.
[4] 曹德光、蘇達根、楊占印、宋國勝,偏高嶺石的微觀結構與鍵合反應能力,礦物 學報,24 (2004) 366-372。
[5] 許偉哲,TFT-LCD廢玻璃鹼激發膠結材之物理性質,土木工程學系碩博士班,國立成功大學,台南市,2009。
[6] 張士晉,掺CFB副產石灰之鹼激發飛灰膠凝材料工程性質之研究,土木工程學系碩博士班,國立成功大學,台南市,2009。
[7] 李祐帆,鹼激發爐石-轉爐石膠結材物理性質之研究,土木工程學系碩博士班,國立成功大學,台南市,2010。
[8] 劉甫,焚化底碴鹼激發效益之評估,土木工程學研究所,臺灣大學,台北市,2010。
[9] 賴琇瑩,鹼激發廢玻璃膠結材之常溫配比研究,土木工程學系碩博士班,國立成功大學,台南市,2010。
[10]官志恆,鹼活化液模數比及劑量對爐石混凝土性質影響之研究,河海工程學系,國立臺灣海洋大學,基隆市,2011。
[11]蔡宗和,含轉爐石及飛灰之鹼激發爐石膠結材,土木工程學系碩博士班,國立成功大學,台南市,2011。
[12]邱友梅,無鹼激發廢玻璃膠結材之研究,土木工程學系碩博士班,國立成功大學,台南市,2012。
[13]邱顯楠,含偏高嶺土與稻殼灰鹼激發膠結材及砂漿之防火性能和工程性質探討,營建工程系,國立臺灣科技大學,台北市,2012。
[14]許皓翔,TFT-LCD廢玻璃以鹼激發方式製成防火材料之研究,環境工程學系碩士班,國立宜蘭大學,宜蘭縣,2012。
[15]謝明蒲,廢玻璃鹼激發膠結材之吸水性能研究,土木工程學系碩博士班,國立成功大學,台南市,2012。
[16]陳冠宇,鹼激發爐石基膠體配比因子對其工程性質影響之研究,營建工程系,國立臺灣科技大學,台北市,2010。
[17]楊仁佑,低溫養護對爐石基無機聚合物工程性質之影響,營建工程系,國立臺灣科技大學,台北市,2011。
[18]陳子謙,複合型無機聚合物砂漿之工程性質,營建工程系,國立臺灣科技大學,台北市,2012。
[19]林育緯,不同鹼激發劑對爐石飛灰無機聚合物工程性質之影響,營建工程系,國立臺灣科技大學,台北市,2012。
[20]鄭百榕,爐石飛灰複合型無機聚合物於常溫及高溫環境之工程性質,營建工程系,國立臺灣科技大學,台北市,2013。
[21]楊宗叡,鹼激發爐灰漿體微觀分析與工程性質研究,營建工程系,國立臺灣科技大學,台北市,2014。
[22]吳宗翰,鹼激發爐灰砂漿鋼筋握裹性質研究,營建工程系,國立臺灣科技大學,台北市,2014。
[23]涂明和,以氧化鈣與三氧化二鋁成份迴歸分析探討鹼激發爐灰砂漿工程性質之影響,營建工程系,國立臺灣科技大學,台北市,2015。
[24]Davidovits J., “Mineral Polymers and method of making them,” USA Paten, No.4, pp. 349, 386, 1982.
[25] Bakharev T., “Durability of geopolymer materials in sodium and magnesium sulfate solutions,” Cem. Concr. Res. 35, pp. 1233–1246, 2005.
[26] Bakharev T., “Resistance of geopolymer materials to acid attack,” Cem. Concr. Res. 35, pp. 1233–1246, 2005.
[27]Wang S. D., K. L. Scrivener and P. L. Pratt, “Factors affecting the strength of alkali-activated slag,” Cem. Concr. Res. 24 pp. 1033–1043, 1994.
[28]Schneide J., M. A. Cincotto and H. Panepucci, “29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes,” Cem. Concr. Res. 31 pp. 993–1001, 2001.
[29]Chang J. J., “A study on the setting characteristics of sodium silicate-activated slag pastes,” Cem. Concr. Res. 33, pp. 1005–1011, 2003.
[30]Xu, J. S. J. van Deventer, “Microstructural characterisation of geopolymers synthesized from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM,” Cem. Concr. Res. 32 pp. 1705–1716, 2002.
[30]Davidovits J., “Geopolymer:man-made rock geosynthesis and the resulting development of very early high strength cement,” Journal of Materials Education, Vol. 16, No. 2-3, pp. 91- 139, 1994.
[31]Dombrowski K. A., Buchwald and M. Weil, “The influence of calcium content on structure and thermal performance of fly ash based geopolymers,” Journal of Materials Science, Vol. 42, No. 9, pp. 3033-3042, 2007.
[32]Lloyd R. R., J. L. Provis and J. S. J. Van Deventer, “Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder,” Journal of Materials Science, Vol. 44, No. 2, pp. 620 – 631, 2009.
[33]陳志賢,「含矽質廢棄物之無機聚合物」,土木工程研究所,國立成功大學,2009。
[34]Shi C., P. V. Krivenko and D. Roy, “Alkali-activated Cement and Concrete,” London and New York: Taylor & Francis, 2006.
[35]Shi C., P. V. Krivenko and D. Roy, “Alkali-activated Cement and Concrete,” London and New York: Taylor & Francis, 2006.
[36]C. Li, H. Sun and L. Li, “A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cement,” Cement and Concrete Research, 2010.
[37]黃兆龍,豪華第三版「混凝土性質與行為」,詹氏書局,2002。
[38]Phair J. W., J. S. J. Van Deventer, ”Effect of silicate activator pH on the microstructural characteristics of waste-based geopolymers”, International Journal Minerals Process,” Vol. 66, pp. 121-143, 2002.
[39]黃兆龍,「卜作嵐混凝土使用手冊」,財團法人中興工程顧問社,2007。
[40]黃兆龍,高爐熟料在水泥上之利用,現代混凝土技術研討會,台灣營建研究中心,1984,pp. 162-177。
[41]行政院公共工程委員會,公共工程飛灰混凝土使用手冊,台北,民國88年。
[42]F. Pacheco-Torgal, J. Castro-Gomes, S. Jalali, Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products, Construction and Building Materials, 2008.
[43]N.Y. Mostafa, S.A.S. El-Hemaly, E.I. Al-Wakeel, S.A. El-Korashy, P.W. Brown, Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag, Cement and Concrete Research, 2001.
[44]D. Li, Z. Xu, Z. Luo, Z. Pan, L. Cheng, The activation and hydration of glassy cementitious materials, Cement and Concrete Research, 2002.
[45]R.N. Swamy, A. Bouikni, Some engineering properties of slag concrete as influenced by mix proportioning and curing, ACI Materials Journal, 1990.
[46]P. Duxson, J.L. Provis, Designing precursors for geopolymer cements, Journal of the American Ceramic Society, 2008.
[47]S. Caijun, L. Yinyu, Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement, Cement and Concrete Research, 19 (1989) 527-533.
[48]S.-D. Wang, K.L. Scrivener, P.L. Pratt, Factors affecting the strength of alkali-activated slag, Cement and Concrete Research, 1994.
[49]J. Faimon, Oscillatory silicon and aluminum aqueous concentrations during experimental aluminosilicate weathering, Geochimica et Cosmochimica Acta, 1996.
[50]S.-D. Wang, K.L. Scrivener, Hydration products of alkali activated slag cement, Cement and Concrete Research, 1995.
[51]W. Mozgawa, J. Deja, Spectroscopic studies of alkaline activated slag geopolymers, Journal of Molecular Structure, 2009.
[52]F. Puertas, A. Fernández-Jiménez, M.T. Blanco-Varela, Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate, Cement and Concrete Research, 2004.
[53]S.-D. Wang, Alkaline activation of slag, Imperial College, University of London, 1995.
[54]S.-D. Wang, K.L. Scrivener, 29Si and 27Al NMR study of alkali-activated slag, Cement and Concrete Research, 2003.
[55]C.K. Yip, G.C. Lukey, J.S.J. van Deventer, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cement and Concrete Research, 2005.
[56]H. Xu, J.S.J. Van Deventer, The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, 2000.
[57]C.K. Yip, G.C. Lukey, J.L. Provis, J.S.J. van Deventer, Effect of calcium silicate sources on geopolymerisation, Cement and Concrete Research, 2008.
[58]M.L. Granizo, S. Alonso, M.T. Blanco-Varela, A. Palomo, Alkaline activation of metakaolin: Effect of calcium hydroxide in the products of reaction, Journal of the American Ceramic Society, 2002.
[59]P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. Van Deventer, Geopolymer technology: The current state of the art, J Mater Sci, 42 (2007) 2917-2933.
[60]A. Fernández-Jiménez, A. Palomo, I. Sobrados, J. Sanz, The role played by the reactive alumina content in the alkaline activation of fly ashes, Microporous and Mesoporous Materials, 91 (2006) 111-119.
[61]J.P. Hamilton, S.L. Brantley, C.G. Pantano, L.J. Criscenti, J.D. Kubicki, Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution, Geochimica et Cosmochimica Acta, 65 (2001) 3683-3702.
[62]A. Buchwald, H. Hilbig, C. Kaps, Alkali-activated metakaolin-slag blends - Performance and structure in dependence of their composition, J Mater Sci, 42 (2007) 3024-3032.
[63]C. Shi, R.L. Day, A calorimetric study of early hydration of alkali-slag cements, Cement and Concrete Research, 25 (1995) 1333-1346.
[64]C. Shi, R.L. Day, Some factors affecting early hydration of alkali-slag cements, Cement and Concrete Research, 26 (1996) 439-447.
[65]V.D. Glukhovsky, Alkali-earth binder and concrete produced with them, Russian: Visheka shkola, Kiev, 1979.
[66]J.W. Phair, J.S.J. Van Deventer, Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers, International Journal of Mineral Processing, 66 (2002) 121-143.
[67]朱純熙,盧晨,水玻璃硬化的認識過程,無機鹽工業,33,2001。
[68]A.R. Brough, M. Holloway, J. Sykes, A. Atkinson, Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid, Cement and Concrete Research, 2000.
[69]K. Komnitsas, D. Zaharaki, V. Perdikatsis, Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers, Journal of Hazardous Materials, 2009.
[70]H. Xu, J.S.J. van Deventer, G.C. Lukey, Effect of Alkali Metals on the Preferential Geopolymerization of Stilbite/Kaolinite Mixtures, Industrial & Engineering Chemistry Research, 40 (2001) 3749-3756.
[71]P.D. Silva, K. Sagoe-Crenstil, V. Sirivivatnanon, Kinetics of geopolymerization: Role of Al2O3 and SiO2, Cement and Concrete Research, 37 (2007) 512-518.
[72]付興華,陶文宏,孫鳳金,水玻璃對地聚物膠凝材料性能影響的研究,水泥工程,(2008).
[73]F. Puertas, S. Martı́nez-Ramı́rez, S. Alonso, T. Vázquez, Alkali-activated fly ash/slag cements: Strength behaviour and hydration products, Cement and Concrete Research, 2000.
[74]Z. Li, S. Liu, Influence of Slag as Additive on Compressive Strength of Fly Ash-Based Geopolymer, Journal of Materials in Civil Engineering, 2007.
[75]廖佳慶,鹼礦渣水泥與混凝土化學收縮和乾縮行為研究,重慶大學材料科學與工程系,重慶,2007。
[76]S. Kumar, R. Kumar, S.P. Mehrotra, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J Mater Sci, 45 (2010) 607-615.
[77]J.E. Oh, P.J.M. Monteiro, S.S. Jun, S. Choi, S.M. Clark, The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers, Cement and Concrete Research, 40 (2010) 189-196.
[78]S.K. Nath, S. Kumar, Influence of iron making slags on strength and microstructure of fly ash geopolymer, Construction and Building Materials, 38 (2013) 924-930.
[79]M. Chi, R. Huang, Binding mechanism and properties of alkali-activated fly ash/slag mortars, Construction and Building Materials, 40 (2013) 291-298.
[80]N.K. Lee, H.K. Lee, Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature, Construction and Building Materials, 2013.
[81]S.A. Bernal, J.L. Provis, B. Walkley, R. San Nicolas, J.D. Gehman, D.G. Brice, A.R. Kilcullen, P. Duxson, J.S.J. van Deventer, Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation, Cement and Concrete Research, 2013.

無法下載圖示 全文公開日期 2021/08/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE