簡易檢索 / 詳目顯示

研究生: 吳宜津
I-Chin Wu
論文名稱: 虛擬實境影片的暈眩研究
VR Sickness in 360 Videos
指導教授: 梁容輝
Rung-Huei Liang
口試委員: 梁容輝
Rung-Huei Liang
余能豪
Neng-Hao Yu
蔡文傑
Wen-Chieh Tsai
學位類別: 碩士
Master
系所名稱: 設計學院 - 設計系
Department of Design
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 100
中文關鍵詞: 虛擬實境暈眩旋轉軸模擬器暈眩光流SSQ模擬器動暈症問卷VR暈眩問卷VR觀看者VR環境狹窄與寬闊眼部震顫視野HRV心跳變異率
外文關鍵詞: virtual reality, cybersickness, axis rotate, simulator sicknes, optical flow, SSQ(simulator sickness questionnaire), VRSQ(virtual reality sickness questionnaire), VR viewers, wide/narrow VR environment, Eye Vibration, field-of-view, HRV(heart rate variability)
相關次數: 點閱:304下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,VR動暈症的成因被不斷討論,其中人們受到環景片運動造成的動暈症,其成因與影響,並未被詳細且系統的歸納出來,目前部分可能的成因在持續歸納與研究中。而成因如何細節的影響觀看者的暈眩,目前並沒有被詳細研究。本研究探討了各派學者認為暈眩可能的成因,並將這些可的成因系統性的更進一步分析,如運動方向分三個軸向分析等,並且探討了當前暈眩的檢定量表,是否能夠更加準確,同時我們同時參考了SSQ(simulator sickness questionnaire)與VRSQ(virtual reality sickness questionnaire)量表,因應快速檢測暈眩,我們制定出能快速檢定觀看者是否暈眩的FVRSQ(fast virtual reality sickness questionnaire)量表。
    本研究之實驗的進行方式為,設計旋轉方向、光流與視野遠近三種自變項的影片給予受試者觀看10min影片,每兩分鐘追蹤一次FVRSQ分數,每人觀看三次,觀看間隔至少48HR。環景影片當中旋轉方向、光流兩項自變項都有三個變項,運動方向分別為上下移動(pitch)左右平移(yaw)正逆時鐘旋轉(roll),光流大小則是分為大中小三個等級,視野遠近以室內與室外虛擬實境環景作為區分,室內會對視野產生壓迫,室外反之。室內組在進行測驗時有讓受試者佩戴心律帶以量測HRV,並在觀看影片前與觀看影片後,錄製30sec受試者的眼睛,計算觀看前後眼睛對焦與發散變化。
    本研究主要目的為:探討VR畫面視覺流刺激是否會造成觀看者的不適,其中視覺留刺激包括影片光流、運動方向與焦距大小,並且也探討部分可能會影響暈眩的元素:包括睡眠的充足程度、容易暈車暈船的程度也與3D遊戲是否容易暈的程度,探討室內與室外的VR影片若以同樣的光流變化與相機移動方式下,對觀看者的暈眩不適程度變化是否有差異,並同時利用量化(獨立樣本T檢定與Anova)與質化(扎跟理論編碼法)的方法進行分析。性別、視野遠近與影片遲滯,使用獨立樣本T檢定;剩餘的部分則是採用Anova。
    量化方法上同得到結果如下:1.影像有遲滯的影片,會更容易造成受試者暈眩,但並無統計學上的顯著運動 2.性別的部分,女性較男性有稍高的暈眩分數,然而並未具有統計學上的意義3.男性比女性更容易受到觀看焦距的影響(男性在SSQ、OSSQ、DSSQ有顯著;女性則是FVRSQ、DSSQ有顯著差異),男性在室內觀看影片增加的暈眩量比女性劇烈;在運動方向上,視野的壓迫讓所以運動方向的增加量都增加,其中roll運動方向在視野壓迫下的增加量具有顯著4.光流部分並未有任合與暈眩的相關性,不過在室內組的光流裡面,光流在最小的時候暈眩值是最低的5.運動方向上,yaw比roll和pitch更容易造成使用者暈眩6.觀看室內環境與室外環境的不同也會造成暈眩的差異,其中室內會比室外來的更暈7.眼動分析上,暈眩分數增加的比較高的觀看者,觀看完影片後的gaze_angle_x與gaze_angle_y比測試前,目光更不容易對焦與集中。
    質性研究結果如下:1.容易造成觀看者暈眩的元素有A. 過度專注B.亮度高C.亮度對比過大D.觀看物突然改變運動方向E.需要理解導致過度專注 2. 會緩和觀看者暈眩的元素有A.亮度低或色彩明度低B.自行創造參考區域C.平衡系統的啟動,在HRV觀察上,可以發現受試者在觀看時,一開始的LF會增加得很快,然而在SSQ分數到達一個上限以後,LF反而就開始下降。


    In recent years, the causes of VR motion sickness have been discussed exactly, and people are affected by all the effects of motion sickness caused by the motion of the panoramic film. They have not been summarized in detail and systematically. At present, only some possible causes are known. How the details of the cause affect the viewer's dizziness has not been studied in detail. This study explores the possible causes of dizziness that scholars of various schools think, and further analyzes these possible causes systematically, such as the analysis of the direction of movement in three axial directions, and explores the current quantitative table of dizziness. We also discussed whether the current dizziness check meter can be more accurate and faster. We also refer to the SSQ (simulator sickness questionnaire) and VRSQ (virtual reality sickness questionnaire) scales. In response to rapid detection of dizziness, we have developed a FVRSQ (fast virtual reality sickness questionnaire) scale that can quickly determine whether the viewer is dizzy.
    The experiment was carried out by designing the three independent variables of rotation direction, optical flow and field of view to allow subjects to watch the film for 10 minutes. FVRSQ scores were tracked every two minutes. Each person watched it three times with a viewing interval of at least 48HR. There are three variables in the rotation direction and optical flow in the surrounding scene film. The direction of motion is up and down (pitch), left and right translation (yaw), clockwise rotation (roll), and the optical flow is divided into large There are three levels of medium and small, and the distance of vision is distinguished by the virtual reality environment of the city and outdoor. In the indoor group, the subjects wear a heart rhythm belt to measure HRV. Before and after watching the movie, the subjects’ eyes were recorded for 30 seconds to calculate the changes in focus and divergence before and after watching the movie.
    The main contribution of the experiment of this research is to explore whether the visual flow stimulus of the VR picture will cause discomfort to the viewer. The visual stimulus includes the optical flow of the film, the direction of motion and the focal length, and also explores some elements that may affect the dizziness: including The degree of adequate sleep, the prone to motion sickness and the degree of seasickness and whether 3D games are prone to dizziness. To explore whether the dizziness and discomfort of the viewer changes under the same optical flow change and camera movement in indoor and outdoor VR videos There are differences, and both quantitative (independent sample T test and Anova) and qualitative (tie-in theory coding method) are used for analysis. Gender, visual field distance, and film lag are determined by independent sample T test; the remaining part uses Anova.
    The quantitative method is the same as the results obtained as follows: 1. Films with delayed images are more likely to cause dizziness, but there is no statistically significant movement. 2. In terms of gender, women have slightly higher dizziness than men. Score, however, is not statistically significant. 3. Men are more likely to be affected by the focal length than women (males have significant differences in SSQ, OSSQ, and DSSQ; females have significant differences in FVRSQ and DSSQ). Men watch movies indoors The amount of increased dizziness is more severe than that of women; in the direction of movement, the compression of the visual field increases the increase in the direction of movement, and the increase in the direction of roll movement under the pressure of the visual field is significant 4. The optical flow part does not have any combination Correlation with dizziness, but in the optical flow of the indoor group, the dizziness value is the lowest when the optical flow is the smallest. 5. In the direction of motion, yaw is more likely to cause user dizziness than roll and pitch. 6. View indoor The difference between the environment and the outdoor environment will also cause the difference in dizziness, among which the indoor will be more dizzy than the outdoor. 7. In eye movement analysis, the viewer who has a higher dizziness score, the ratio of gaze_angle_x and gaze_angle_y after watching the movie Before the test, the eyes are more difficult to focus and focus.
    The qualitative research results are as follows: 1. The elements that easily cause the viewer to dizzy are A. Over concentration B. High brightness C. Bright contrast is too large D. Viewing objects suddenly change the direction of movement E. Need to understand that leads to excessive concentration 2. Will ease viewing The elements of dizziness include A. Low brightness or low color brightness B. Self-created reference area C. Activation of the balance system, in the HRV observation, it can be found that when the subject is watching, the initial LF will increase quickly However, after the SSQ score reaches an upper limit, LF starts to drop instead.

    摘要 - 1 - ABSTRACT - 3 - 圖目錄 - 7 - 表目錄 - 8 - ㄧ、緒論 - 10 - 1.1研究背景與動機 - 10 - 1.2動暈症的定義與分類 - 10 - 1.3暈眩程度的量化方式 - 11 - 1.4論文架構 - 11 - 二、文獻探討 - 12 - 2.1動暈症種類及可能成因 - 12 - 2.2 外部環境(運動方向與光流)對動暈症的影響 - 12 - 2.3視覺空間對於暈眩的影響 - 13 - 2.4光流 - 13 - 2.4暈眩量化評估 - 13 - 2.4.1 SSQ(simulator sickness questionnaire score) - 14 - 2.4.2 VRSQ(virtual reality sickness questionnaire score) - 14 - 2.5 HRV - 16 - 2.5.1 HRV生理定義 - 16 - 2.5.2 感官刺激對HRV的影響 - 16 - 三、研究方法 - 17 - 3.1實驗樣本與研究對象 - 17 - 3.2資料搜集與實驗流程(見圖3.2.2) - 18 - 3.3資料分析 - 20 - 四、 室外組影片組暈眩測試 - 21 - 4.1 樣本拍攝 - 21 - 4.2室外組受試者 - 22 - 4.2.1前十位受試者 - 22 - 4.2.2後面十一位受試者 - 22 - 4.2.3完整21位受試者 - 22 - 4.3變因比較 - 23 - 4.3.1暈眩與性別 - 23 - 4.3.2暈眩與玩3D遊戲容易暈的程度 - 24 - 4.3.3暈眩與光流 - 25 - 4.3.4 暈眩與相機運動方向 - 25 - 五、 室內組影片暈眩測試 - 30 - 5.1樣本拍攝 - 30 - 5.2.1 暈眩與性別 - 30 - 5.2.2 暈眩與玩3D遊戲容易暈的程度有顯著 - 32 - 5.2.3 暈眩與光流無顯著 - 35 - 5.2.4 暈眩與相機運動方向有顯著 - 37 - 5.2.5 暈眩與眼動 - 40 - 六、綜合比較 - 41 - 6.1結論一-室內比室外環景影片更容易對受試者產生暈眩 - 41 - 6.2結論二-影片的遲滯更容易對受試者產生暈眩(無統計上顯著) - 42 - 6.3結論三-男性比女性更容易受到室內與室外(環境焦距或視野壓迫)的影響 - 43 - 6.4結論四-不同程度的3D遊戲暈眩的用戶也會與暈眩分數有同樣的趨勢 - 49 - 6.5結論五-睡眠程度對於暈眩沒有顯著影響 - 53 - 6.6 結論六-自評容易暈車暈船程度越高也越容易VR暈 - 54 - 6.7 結論七-左右旋轉YAW運動方向比起其他方向更容易暈眩 - 60 - 6.8 結論八-原始影片不含運動方向之光流對於暈眩影響不顯著 - 65 - 6.9質性分析 - 67 - 6.9.1 受試者編碼分析 - 67 - 6.9.2質性成果小結 - 69 - 七、討論 - 70 - 7.1 室外前十位受試者觀看的影片有遲滯 - 70 - 7.2 HRV與SSQ數值 - 70 - 7.3個案分析 - 70 - 7.4研究限制 - 73 - 7.5研究未來展望 - 73 - 八、結論 - 75 - 九、參考文獻 - 77 - 十、附錄 - 79 -

    1. Ben D Lawson and Bernhard E Riecke. 2014. The perception of body motion. Handbook of virtual environments: Design, implementation, and applications 2 (2014), 163–196.
    2. Curtis, M.K. (2014). Investigation of visually induced motion sickness: a comparison of mitigation techniques in real and virtual environments. Graduate Theses and Dissertations. Paper 14094
    3. Majed Al Zayer, Isayas B. Adhanom, Paul MacNeilage, Eelke Folmer (2019). The Effect of Field-of-View Restriction on Sex Bias in VR Sickness and Spatial Navigation Performance. CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK.
    4.Jiun-Yu Lee, Ping-Hsuan Han, Ling Tsai, Rih-Ding Peng, Yang-Sheng Chen, Kuan-Wen Chen, Yi-Ping Hung(2017). Estimating the Simulator Sickness in Immersive Virtual Reality with Optical Flow Analysis.
    5.Alla Vovk, Fridolin Wild, Will Guest, Timo Kuula(2018). Simulator Sickness in Augmented Reality Training Using the Microsoft HoloLens. CHI 2018, April 21–26, 2018, Montréal, QC, Canada.
    6. Séamas Weech, Jessy Parokaran Varghese, and Michael Barnett-Cowan. 2018. Estimating the sensorimotor components of cybersickness
    7. Hiroshi Watanabe, Wataru Teramoto, Hiroyuki Umemura and Katsunori Matsuoka.2005.The reduction of mental strain using with the visual sign in Virtual Environment
    8. Simon Davis,Keith NesbittEugene Nalivaiko.2015:Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters
    9. R.S. Kennedy, N.E. Lane, K.S. Berbaum, M.G. Lilienthal, Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness, Int. J. Aviat. Psychol. 3 (1993) 203–220,
    10. Fernandes, S. & Feiner, S.K. (2016) Combating VR sickness through subtle dynamic field-of-view modification. IEEE Symposium on 3D User Interfaces (3DUI), Greenville, SC, USA, 2016, pp. 201-210. DOI: 10.1109/3DUI.2016.7460053
    11. Davis, S, Nesbitt, K., & Nalivaiko, E. (2014). A systematic review of cybersickness. In Proceedings of the 2014 Conference on Interactive Entertainment (IE2014), Karen Blackmore, Keith Nesbitt, and Shamus P. Smith (Eds.). ACM, New York, NY, USA, Article 8, 9 pages. DOI=http://dx.doi.org/10.1145/2677758.2677780
    12. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G., 1993. Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3 (3), 203–220.
    13. 陳益民(2014) 淺談 HRV 在 ADHD 兒童臨床醫學上之應用, 東華特教雜誌,2014年7月
    14. 高新培,紀徵,喬麗穎,劉立娟,王兆翔,馬威,王斌(2018) 放鬆訓練對不穩定性心絞痛患者心率變異性的影響, 中國老年學雜誌,2018年23期 .
    15. Marzena Malińska, Krystyna Zużewicz, Joanna Bugajska & Andrzej Grabowski (2015) Heart rate variability (HRV) during virtual reality immersion, International Journal of Occupational Safety and Ergonomics, 21:1, 47-54, DOI: 10.1080/10803548.2015.1017964
    16. Matilda Annerstedt , Peter Jönsson, Mattias Wallergård, Gerd Johansson, Björn Karlson, Patrik Grahn, Åse Marie Hansen, Peter Währborg(2013),Inducing physiological stress recovery with sounds of nature in a virtual reality forest — Results from a pilot study,Physiology & Behavior 118 (2013) 240–250
    17. Gunnar Farneba ̈ck(2003), Two-Frame Motion Estimation Based on Polynomial Expansion,

    QR CODE