簡易檢索 / 詳目顯示

研究生: 西學偉
Hsueh-wei hsi
論文名稱: 自充填輕質混凝土工程性質之研究
Study on Engineering Properties of Self-Compacting Lightweight Concrete
指導教授: 張大鵬
Ta-peng Chang
口試委員: 詹穎雯
Yin-wen Chan
劉玉雯
Yu-wen Liu
邱建國
Chien-kuo Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 103
中文關鍵詞: 輕質粒料V型漏斗法U箱型法自充填輕質混凝土(SCLC)信心水準不確定因素
外文關鍵詞: lightweight aggregates, Self-Compacting Concrete, SCLC, confidence standard
相關次數: 點閱:303下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文使用石門水庫淤泥再生輕質粒料取代常重粗粒料,以坍流度試驗、V型漏斗法及U箱型法檢驗自充填輕質混凝土(SCLC)新拌性質,以動彈(剪)性模數、動波松比、超音波速及熱傳導係數等非破壞性試驗量測其硬固性質,並進行三個齡期之圓柱試體抗壓試驗;最後以量測不確定度數學模式進行分析評估,以了解SCLC替代自充填混凝土(SCC)可行性,以及品質穩定度與試驗結果信賴度。
試驗變數包括在單一水膠比(W/B=0.35)情況,使用常重粒料及比重分別為1.1 (SG11),1.3 (SG13)及1.6(SG16)等三種水庫淤泥再生輕質粒料;以及在比重1.3之輕質粒料條件,使用三種水膠比(W/B = 0.32, 0.33, 0.34)。
根據混凝土試體抗壓強度試驗結果之不確定因素來源可分為常態分配與矩形平均分配兩類,當W/B = 0.35時,混凝土28天抗壓強度在信心水準95.44 % (兩個標準差)的範圍分別為383~417 kgf/cm2 (SG11)、419~463 kgf/cm2(SG13)、459~497 kgf/cm2 (SG16)及485~507 kgf/cm2 (NC),顯示常重粒料SCC具有較高的信賴度。
所有試驗結果顯示SCLC早期抗壓強度發展趨勢優於SCC,7天抗壓強度達344~396 (kgf/cm2)為28天抗壓強度68~71 %。另外,U型箱試驗期充填高度BH達330 mm以上;V型漏斗流下速度(Vm)試驗顯示SCLC較為緩慢約為SCC的70 %,其中SP添加量高者Vm相對提高;SCLC熱傳導係數在1.05~1.31(W/mK)間,約為SCC熱傳導係數的60%,因此,除了流動速度較慢外,SCLC大部份的其餘材料特性均優於SCC。

關鍵字:輕質粒料、V型漏斗法、U箱型法、自充填輕質混凝土(SCLC)、信心水準、不確定因素。


The locally regenerated lightweight aggregates made from silts taken from domestic Shimen reservoir in Taiwan were used as substitutes for normal weight aggregates used in SCC with different mixture designs in this study. To evaluate the plastic properties of the fresh lightweight concrete(SCLC), the slump-flow test、V-Funnel and U-Box method(to measure the passing ability of SCLC in congested reinforcement or other obstruction)were employed. For the evaluation of the hardened SCLC, the non-destructive test methods used in this paper follows the procedures specified in ASTM, and thus dynamic modulus of elasticity, Poisson’s ratio, and thermal conductivity were measured. The Ultrasonic Pulse Velocity Method (UPVM) was also conducted on test specimen. The cylinder specimen compressive strength for different curing ages was studied via uncertainty mathematical models and by means of analysis of variance. The reliability appraisals for the test results were also studied to assess the quality stability of SCLC in order to evaluate the feasibilities of using SCLC as a substitute for SCC.
Mixture were proportioned with a w/binder ratio of 0.35 for a normal weight SCC, and 3 kinds of SCLC with different densities, i.e., specific gravity S.G. =1.1, S.G.=1.3, and S.G.=1.6 respectively. A series of w/binding materials ratio (w/b=0.32, 0.33 and 0.34respectively) vs compressive strength of SCLC have been also tested for the SCLC specimen with S.G. =1.3 lightweight aggregates.
Based on the tests conducted, and by means of the statistical analysis of normal/average distribution, it was found that under the confidence standard of 95.44%(with 2σ deviation), the compressive strength for an age of 28days are as follows respectively:383~417kgf/cm2 for (SG1.1), 419~463 kgf/cm2 for (SG1.3), 459~497 kgf/cm2 for (SG1.6), and 485~507 kgf/cm2 for normal weight concrete (NC), revealing that the degree of reliability for SCC is high than that of SCLC.
The test results revealed that the early time compressive strength of SCLC surpassed that of SCC. For an age of 7 days, compressive strength of SCLC was as high as 344~396 kgf/cm2, being approximately equal to 68~71% of that of an age of 28 days. Moreover, test results of U-box flowing test showed that the backfill height (BH) reached as high as 330 mm or more. Test results from V-Funnel method revealed that the flowing speed of SCLC was slower than that of SCC, among which Vm value increased as super-plasticizer (SP) dosage increased. The thermal conductivity of the SCLC ranges from 1.07 to 1.31(W/m K) and is only about 60% of SCC. Most of the material properties of SCLC are better than those of SCC except that the flowing speed of the former is slower for SCLC.
Key words: lightweight aggregates, Self-Compacting Concrete, SCLC, confidence standard.

中文摘要 英文摘要 誌謝 目錄 表目錄 圖目錄 壹、緒論 1-1 研究動機 1-2 研究目地 1-3 研究方法 1-4 研究流程 貳、文獻回顧 2-1 水庫淤泥再生輕質粒料 2-2 輕質粒料 2-2-1結構用輕質粒料分類 2-2-2輕質粒料膨脹的原理 2-3輕質粒料 混凝土性質 2-4自充填混凝土之工程性質 2-4-1自充填混凝土卜作嵐材料 2-4-2化學掺劑 2-5自充填混凝土SCC與SCLC配比 2-6自充填混凝土流變性質 2-7自充填輕質混凝土之工程性質 2-8自充填輕質混凝土之拌製 2-9動彈性模數 2-10超音波速 2-11熱傳導 參、試驗計畫 3-1 試驗架構 3-2 試驗內容 3-3 試驗材料 3-4 試驗儀器設備 3-5配比設計 3-6材料參數與變數範圍 3-6-1砂漿 3-6-2粗粒料 3-7 輕質粒料性質試驗 3-8自充填輕質混凝土性質試驗 3-8-1自充填輕質混凝土拌和程序 3-8-2自充填輕質混凝土新拌性質試驗 3-8-3自充填輕質混凝土硬固性質試驗 肆、試驗結果分析與討論 4-1輕質粒料性質試驗結果 4-2自充填輕質混凝土新拌性質 4-2-1不同拌和程序對於工作度之影響 4-2-2砂漿與混凝土流動行為 4-3輕質粒料取代常重粒料對於自充混凝土工程性質之影響 4-3-1動彈性模數 4-3-2 動波松比 4-3-3 超音波速 4-3-4熱傳導係數 4-3-5抗壓強度 4-4量測不確定度分析與評估 伍、結論與建議 5-1 結論 5-2 建議 參考文獻 作者簡介

1. 劉以銓,「水庫淤積浚渫之推動構想與實務」,2003年水庫淤泥資源
再生利 用研討會論文集,第31~48頁,台中 ,2003年11月。
2. 王順元,「水庫淤泥輕質骨材燒製研究」,碩士論文,2000。
3. ASTM, “Standard Specification for Lightweight Aggregate for Structural Concrete”, ASTM C330-03,pp.1-4, 2003.
4. American Concrete Institute, ACI 213 Guide for Structural Lightweight Concrete, Report by ACI Committee 213, pp.8-14, 1987.
5. CEB/FIP, Lightweight Aggregate Concrete, CEB/FIP, Manual of Design
Technology, the Construction Press, 2nd Edition, pp.63~100, 1983.
6. Riley,C.M.﹐”Relation of Chemical Properties to the Bloating of Clays”﹐Journal of the American Ceramic Society.34﹐No.4﹐pp.121~128, 1951.
7. 中國國家標準,「結構混凝土用輕質粒料修訂版」,CNS 3691 A
2046,2004。
8. Videla, C., and Lopez, M., “Mixture Proportioning Methodology for Structural Sand-lightweight Concrete”, ACI Materials Journal, Vol. 97,No.3, pp.281-289, 2000.
9. Zhang, M.F, and Gjorv, O.E., “Mechanical Properties of High Strength Lightweight Concrete”, ACI Material Journal, Vol.88, No.3, pp.240-247 , 1991.
10. Tomas, A. H., and Alexander, M. V., “Structural Lightweight Aggregate Concrete Performance, SP-136,” American Concrete Institute, Michigan, 1992, P. 424.
11. D. A. Abrams﹐1918 - Design of Concrete Mixtures (The effect of the water content and the grain size and grain size distribution on the compressive strength of concrete. Test methods for the water-cement ratio and fineness modulus).
12. 陳豪吉,(顏聰指導)「以台灣地區生產之輕質骨材探討輕質混凝土配比、製作及強度性質」,博士論文,中興大學土木工程研究所。
13. 中國土木水利工程學會混凝土工程委員會,混凝土工程施工規範與解說(土木402-94),科技圖書股份有限公司,2006年1月。
14. Mindess, S., Young, J.F. and Darwin, D., Concrete, 2nd edition, Prentice-Hall Inc , 2003。
15. 林炳炎,「飛灰、矽灰及高爐石用在混凝土中」,1993。
16. Poon, C.S., Azhar, S., Anson, M., and Wong, Y.L., ‘Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures,” Cement and concrete research, Vol. 31, No. 9, pp. 106-112, 2001.
17. Mehta, P.K. and Monteiro, P.J.M., Concrete: Microstructure, Properties and Materials, 3rd edition, McGraw-Hill , 2005.
18. Helmuth,R.A.,”Water-Reducing Properties of Fly Ash in Cement
Pastes”﹐Motars﹐and Concrete: Causes and Test methods , ACI SP-91﹐Vo1.1, pp.723-740, 1987.
19. 林英草、黃兆龍、洪賢信,「飛灰部份取代混凝土細骨材之可行性研究」,台灣電力公司綜合研究所,1987。
20. 黃兆龍,「混凝土性質與行為」,詹氏書局 初版二刷 ,1998年2月。
21. 興大工程學刊 第十四卷 第二期 P107~114 ,2003年7月。
22. 歐昱辰(詹穎雯指導),「自充填混凝土配比及早期行為之研究」,碩士論文,國立台灣大學土木工程研究所,2001年6月 。
23. Nan Su, Kung-Chung Hsu, His-Wen Chai.,” A simple design method for self-compacting concrete” ,Cement & Concrete Research,Vol.31, 2001.
24. Nan Su, Buquan Miao., A new method for mix design of medium strength flowing concrete with low cement content, Cement and Concrete Composites, Vol. 25, 2003.
25. 黃兆龍;湛淵源,「中國土木工程學會高強與高性能混凝土委員會第五屆學術討論會」,第5卷,2004。
26. 王復生 , 孫瑞蓮 , 張小濤 ,「中國土木工程學會高強與高性能混凝土委員會第五屆學術討論會」,第5卷﹐2004 。
27. 陳柏存(張大鵬教授指導),「以表面波譜法與支持向量機評估高溫損傷混凝土之性質」,博士論文,國立台灣科技大學營建工程系研究所,2009年2月。
28. 徐金泉,「水淬高爐爐渣(石)粉應用於混凝土技術」,pp.6- pp.52,1998年4月初版。
29. 中國國家標準,“高流動性混凝土坍流度試驗法:CNS 14842 A
3400;自充填混凝土流下性試驗(漏斗法):CNS 14841 A3399;自充填混凝土障礙通過性試驗(箱型法):CNS 14840 A3398。
30. 財團法人全國認證基金會,「測試結果量測不確定度評估指引」,TAF-CNLA-G03(1)。
31. 吳江富,陳志超,王永東,「自充填混凝土(Self-Compacting Concrete)
之特性與應用」,中華技術雜誌第50期,2001年4月。
32. ANSI/NCSL, Z540-2-1997, “U.S. Guide to the Expression of Uncertainty in Measurement”, 1st ed., October ,1997.
33. Eurachem/CITAC, “Quantifying Uncertainty in Analytical Measurement”, 2nd edition, 2000.
34. ILAC-G17:2002 Introducing the Concept of Uncertainty of Measurement in Testing in Association with the Application of the Standard ISO/IEC 17025.
35. ISO/DTS 21748, “Guide to the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation” .
36. ISO/IEC 17025:1999, “General requirements for the competence of calibration and testing laboratories” .
37. United Kingdom Accreditation Service, The Expression of Uncertainty in Testing, UKAS publication ref: LAB 12, 1st ed., September, 2000.

QR CODE