簡易檢索 / 詳目顯示

研究生: 鄒興保
Hsing-Pao Tsou
論文名稱: 複數增益數位預扭器於寬頻分碼多工系統之分析
Analysis of Complex Gain Digital Predistorter for WCDMA System
指導教授: 張立中
Li-Chung Chang
口試委員: 劉馨勤
Hsin-Chin Liu
曾德峰
Der-Feng Tseng
陳永芳
none
曾恕銘
Shu-Ming Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 55
中文關鍵詞: 寬頻分碼多工系統預扭器功率放大器轉換對照表正割法線性法極坐標法
外文關鍵詞: WCDMA, Predistorter, Power Amplifier, LUT, Secant method, Linear method, Polar method
相關次數: 點閱:176下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在通訊系統中,高功率放大器是一個非線性的元件。由於放大器的非線性關係,訊號經過放大器後,會對訊號產生振幅和相位失真項。這樣的影響不是我們所希望的,為了改善此現象,預扭器方式便被提出。預扭器針對放大器的振幅和相位項,產生一個反函數,使得訊號經過預扭器補償後,能得到線性的效果。在本篇論文中,分析一個複數增益數位預扭器,它是由轉換對照表所組成,用來補償功率放大器所造成的非線性效應。轉換對照表更新的方式可以分為三種(正割法、線性法、極坐標法)。本篇論文中,針對無記憶性的放大器模型比較三種轉換對照表更新方法對於放大器輸出的錯誤誤差收斂快慢。亦比較錯誤率、功率頻譜密度函數的影響。本篇論文系統架構於寬頻分碼多工系統下.


    Power amplifiers (Pas) are inherently nonlinear devices and are used in virtually all communications systems. However, they produce distortions by creating AM/AM and AM/PM responses in the transmitting signal. The predistortion is accomplished by inverse modeling of the AM/AM and AM/PM responses of a high power amplifier. This thesis analyzes a complex gain digital predistorter (CGDP), which is composed of a look-up table (LUT), that can compensate for the distortion produced by a PA. LUT adaptation is investigated by using three methods (Secant method, Linear method, Polar method). We compare which method has the best convergence of the squared magnitude of the power amplifier output error for a memoryless Travelling Wave Tube Amplifier (TWTA). We also investigate the bit error rate (BER) and power spectrum density(PSD)function for different adaptation algorithms. The performance of the proposed algorithm is demonstrated on a WCDMA system.

    摘要 I Abstract II Contents III Contents of Tables V Contents of Figures V 1. INTRODUCTION………………………...……………………….1 2. WCDMA SYSTEM MODEL……………………………………..4 2.1 The WCDMA air interface……………………………………………….4 2.2 WCDMA specifications…………………………...………………………4 2.3 Uplink spreading and scrambling………………………………………...6 2.3.1 Spreading code (OVSF)…………………………………………...7 2.3.2 Scrambling code…………………………………………………...9 2.4 Uplink frame structure…………………………………………..……...11 2.5 Modulation………………………………………………………………..14 2.6 Simulation model…………………………………………………………16 2.6.1 Transmitter model………………………………………………..16 2.6.2 Receiver model…………………..………………………………18 3. POWER AMPLIFIER MODEL……………………………….20 3.1 TWTA model……………………………………………..………………...21 3.2 SSPA model……………………………………………………………...…22 4. PREDISTORTER DESIGN……………………………………....24 4.1 Complex gain digital predistorter (CGDP)……..…………………….24 4.1.1 Index by power…………………………………………………..25 4.1.2 Index by magnitude……………………………………………...27 4.2 Design of the look-up table………………………………………..28 4.3 Adaptation of the predistorter……………………………………….….30 4.3.1 Index by power…………………………………………………..30 4.3.2 Index by magnitude………………………………………………32 5. SIMULATION DESCRIPTION AND RESULTS…………….34 5.1 Simulation parameters……………………………………………………34 5.2 Simulation results………………………………………………………...34 5.2.1 Simulation 1…..…………………………………………………34 5.2.2 Simulation 2……………………………………………………..37 5.2.3 Simulation 3……………………………………………………..40 5.2.4 Simulation 4……………………………………………………..46 5.2.5 Simulation 5……………………………………………………..48 6. CONCLUSION……………………………………………….…..52 REFERENCE…………………………………………………………53

    [1] Cripps, S. C., Advanced Techniques in RF Power Amplifier Design. Norwood, MA: Artech House, 2002.
    [2] Kenington, P. B., High-Linearity RF Amplifier Design. Norwood, MA: Artech House, 2000.
    [3] Vuolevi, J. H. K., Rahkonen, T., and Manninen, J. P. A., ”Measurement technique for characterizing memory effects in RF power amplifiers," IEEE Trans. on Microwave Theory and Techniques, vol. 49, pp. 1383-1388, Aug. 2001.
    [4] Kim, J. and Konstantinou, K., “Digital predistortion of wideband signals based on power amplifier model with memory," IEE Electronics Letters, vol. 37, pp. 1417-1418, Nov. 2001.
    [5] Y. Y. Woo, Y. Yang, J. Yi, J. Nam, J. Cha, and B. Kim, “A new adaptive feedforward amplifier for WCDMA base stations using imperfect signal cancellation,” Microwave J., vol. 46, no. 4, Apr. 2003.
    [6] Y. Kim, Y. Yang, S. H. Kang, and B. Kim, “Linearization of 1.85 GHz amplifier using feedback predistortion loop,” in IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, 1998, pp. 1675–1678.
    [7] A. N. D’Andrea, V. Lottici, and R. Reggiannini, “RF power amplifier linearization through amplitude and Phase Predistortion,” IEEE Transactions on Communications, 44(11):1477-1484, November 1996.
    [8] J. K. Cavers, “Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements, ” IEEE Transactions on Vehicular Technology,39(4):374-382, November 1990.
    [9] M. Di Benedetto and P. Mandarini, “A new analog predistortion criterion with application with application to high efficiency digital radio links, ” IEEE Transactions on Communications,3(12):2996--2974, December 1995.
    [10] A. A. M. Saleh and J. Salz, “Adaptive linearization of power amplifiers in digital radio systems,” Bell Syst. Tech. J., 62(4):1019--1033, April 1983.
    [11] G.. Karam and H. Sari, “ A data predistortion technique with memory for QAM radio
    systems, ”IEEE Transactions on Communications, 39(2):336--344,February 1991.
    [12] Raich, Raviv, “Nonlinear system identification and analysis with applications to power amplifier modeling and power amplifier predistortion,” Ph.D. Dissertation, Georgia institute of technology , March 2004.
    [13] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems. New York:
    Wiley, 1980.
    [14] 3GPP, TS25.211, V3.11.0, Physical Channels and Mapping of Transport Channels
    onto Physical Channels (FDD). Sophia Antipolis, F:ESTI,2002.
    [15] 3GPP, TS25.212, V3.10.0, Multiplexing and Channel Coding (FDD). Sophia Antipolis, F:ESTI,2002
    [16] 3GPP, TS25.213, V3.8.0, Spreading and Modulation (FDD). Sophia Antipolis, F:ESTI,2002
    [17] 3GPP, TS25.201, V3.11.0, UE Radio Transmission and Reception (FDD). Sophia
    Antipolis, F:ESTI,2002
    [18] L. Qian and S. Berber, “ 3G WCDMA Design, Simulation and Analysis Using
    Ptolemy Software Tools,” The University of Auckland, New Zealand, pp. 897-901,
    2003
    [19] A.A.M. Saleh, “Frequency-independent and Frequency-dependent Nonlinear Models
    of TWT Amplifiers, ”IEEE Transactions on Communications, vol.29,no.11,pp.1715-1720, November 1981
    [20] G.. Santella and F. Mazzenga, “A hybrid analytical simulation procedure for performance evaluation in M-QAM-OFDM schemes in presence of nonlinear distortions,” IEEE Trans. Vehicular Tech., vol.47,pp142-151, Feb.1998
    [21] J. K. Cavers, “Optimum table spacing in predistorting amplifier linearizers, ” IEEE Trans. Veh. Technol. Vol. 48, pp. 1699-1705, Sept. 1999.
    [22] K. C. Lee and P. Gardner, “Comparison of Different Adaptation Algorithms for Adaptive Digital Predistortion based on EDGE Standard,” school of Electronic & Electrical Engineering, University of Birmingham, pp. 1353-1356, 2001.

    無法下載圖示 全文公開日期 2011/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE