簡易檢索 / 詳目顯示

研究生: 盧睿紘
Ruei-Hung Lu
論文名稱: 使用MOSFET技術設計負閘極偏壓單級注入鎖定頻率倍頻器
Using MOSFET Negative Gate Bias Technology to Design Single-Stage Injection-Locked Frequency Multiplier
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 張勝良
Sheng-Lyang Jang
宋峻宇
Jiun-Yu Sung
林群祐
Chun-Yu Lin
黃進芳
Jhin-Fang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 132
中文關鍵詞: 倍頻器負閘極偏壓
外文關鍵詞: Frequency Multiplier, Negative Gate Bias
相關次數: 點閱:138下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在通訊十分發達的如今,Radio Frequency(RF)射頻收發機已變成舉足輕重的角色,其中射頻收發機的內部構成便成為科技發展的主要方向,例如:低噪聲放大器(LNA)、頻率合成器(FS)、功率放大器 (PA)和混頻器(Mixer)。而此篇論文會主要著墨在頻率合成器(FS),並提供三種低功率、低相位雜訊與寬鎖定範圍和震盪器特性的倍頻器之設計。
    第一部分設計一個於閘極使用負偏壓的MOSFET倍頻器(二倍頻),強制使倍頻器MOSFET的偏壓處於夾止(pinched-off)的狀態,以此達成降低直流所產生的功耗。閘級的負偏壓Class-D VCO內部電壓經由HBT整流器所產生。VCO亦提供三倍電源電壓峰值的電壓擺幅與高負電壓。此VCO-FD在tsmc 0.18 μm BiCMOS製程中,所使用的矽晶片面積為 1.1945 × 1.152 mm2。而此VCO可以藉由調整交叉耦合的FETs閘極偏壓來使倍頻的輸出頻率改變,其工作頻率為4.17 GHz至4.34 GHz。
    第二部分設計一種使用tsmc 0.18 μm BiCMOS製程的單級LC-tank注入鎖定頻率六倍頻器(ILFS),而ILFS由多個子電路與一個共用電源所組成。ILO的自振頻率位於5.617 GHz,在直流功耗20.9 mW與注入訊號功率0 dBm的情況下,×6輸入鎖定頻率為0.94 GHz至1.02 GHz,並提供輸出信號頻率範圍為5.64 GHz至6.12 GHz。此設計所使用的矽晶片面積為1.141 × 1.2 mm2。其他倍數之輸出頻率亦可在此設計上量測。
    最後的部分設計一種新工作原理的注入鎖定倍頻器(×2n ILFM),此倍頻器的電路基於一個注入鎖定震盪器(ILO)與nMOS倍頻器。ILO的自振頻率為2.93 GHz。在直流功耗20.9 mW與注入信號功率0 dBm的條件下,×2輸出鎖定範圍為 4.1 GHz 至 8.6 GHz 頻率。此晶片使用0.18 μm CMOS製程,其使用面積為1.141×1.2 mm2。ILFD電路具有較寬的鎖定範圍和良好的Phase noise。


    Nowadays, Radio Frequency (RF) transceivers have become a pivotal role in the development of communications. The internal components of RF transceivers have become the main direction of technological development, such as Low Noise Amplifier (LNA), Frequency Synthesizer (FS), Power Amplifier (PA) and Mixer (Mixer). This thesis will focus on frequency synthesizer (FS) and provide three designs of frequency multiplier with low power consumption, low phase noise and wide locking range.
    The first part designs a MOSFET frequency doubler (×2 FD) with negative gate bias to enforce the doubler MOSFET biased in the pinched-off to lower DC power dissipation. The negative gate bias is generated by the HBT diode rectifier using the class-D VCO internal voltages as input voltages. The integrated VCO-FD in the tsmc 0.18 μm BiCMOS uses a silicon die area of 1.1945×1.152 mm2. The varactor-less VCO is tunable by varying the gate bias of the capacitive cross-coupled FETs, so that the frequency doubler output frequency is tunable and it operates from 4.17 GHz to 4.34 GHz.
    The second part designs a single-stage LC-tank injection locked frequency sixtupler (ILFS) fabricated in 0.18 μm CMOS process and the ILFS merges many sub-circuits in one by sharing a common supply and passive inductive elements. The differential input and single-phase output ILFS circuit is made of two frequency doublers, a first-harmonic injection-locked oscillator and an active frequency tripler using one frequency doubler. The free-running oscillation frequency of the ILO is around 5.716 GHz. At the DC power consumption of 20.9 mW and at the incident power of 0 dBm, the ×6 input locking range is from the incident frequency 0.94 GHz to 1.02 GHz to provide an output signal source from the frequency 5.64 GHz to 6.12 GHz. The whole chip occupies a die area of 1.141×1.2 mm2. Other high multiplier factors are also measured on the designed chip.
    In the last part design, an injection locked frequency multiplier (×2n ILFM) with new operation principle is proposed and characterized. The circuit as a frequency doubler is based on one injection-locked oscillator (ILO) and an nMOS frequency doubler. The free-running oscillator frequency of the ILO is around 2.93 GHz. At the DC power consumption of 20.9 mW and at the incident power of 0 dBm, the ×2 output locking range is from the frequency 4.1 GHz to 8.6 GHz. The whole 0.18 μm CMOS chip occupies a silicon die area of 1.141×1.2 mm2. The ILFD circuit shows wide locking range and a good locked phase noise. The circuit is also used a single-stage LC-tank injection locked frequency quadrupler (ILFQ), the free-running oscillator frequency of the ILFQ is around 5.73 GHz. At the incident power of 0 dBm, the ×4 output locking range is from the frequency 5.55 GHz to 6.39 GHz.

    中文摘要 I Abstract II 致謝 IV Table of Contents V List of Figures VII List of Tables XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 3 Chapter 2 Principles and Design Considerations of Voltage Controlled Oscillators 5 2.1 Introduction 5 2.2 The Oscillators Theory 6 2.2.1 Feedback Oscillators (Two port) 7 2.2.2 Negative Resistance and Resonator (One port) 9 2.3 Category of Oscillators 12 2.3.1 Ring Oscillator 12 2.3.2 LC-Tank Oscillator 16 2.4 Design Concepts of Voltage-Controlled Oscillator 19 2.4.1 Parameters of a Voltage-Controlled Oscillator 20 2.4.2 Phase Noise 22 2.4.3 Quality Factor 27 2.5 Inductor Design in VCO 28 Chapter 3 Frequency Doubler Using Negative Gate Biased MOSFET 37 3.1 Introduction 37 3.2 Circuit Design and Simulated 38 3.3 Measurement 44 Chapter 4 Single-Stage Injection-Locked Frequency Sixtupler in CMOS Process 52 4.1 Introduction 52 4.2 Circuit Design and Simulated 54 4.3 Measurement 60 Chapter 5 Even-Modulus CMOS Injection-locked Frequency Multiplier 72 5.1 Introduction 72 5.2 Multiply-by-2 ILFM 74 5.2.1 Circuit Design of the Multiply-by-2 ILFM 74 5.2.2 Measurement of the Multiply-by-2 ILFM 76 5.3 Injection Locked Frequency Quadrupler (ILFQ) 84 5.3.1 The Multiply-by-2 ILFM 86 5.3.2 Experiment of the Multiply-by-4 ILFM 90 5.4 Injection Locked Frequency Octupler (ILFO) 94 5.4.1 Experiment of the Multiply-by-4 ILFM 95 5.4.2 Experiment of the Multiply-by-8 ILFM 99 5.5 Multiply-by-1 ILFM 103 Chapter 6 Conclusions 112 References 114

    [1] B. Razavi, RF Microelectronics, Upper Saddle River, Prentice Hall, 1998.
    [2] N. M. Nguyen and R. G. Meyer, "Start-up and frequency stability in high-frequency oscillators," IEEE J. Solid-State Circuit, vol. 27, no. 5, p. 810–820, 5 1992.
    [3] B. Razavi, in Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
    [4] B. Razavi, in Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [5] K.-W. Cheng and Y.-R. Tseng, "5 GHz CMOS quadrature VCO using trifilar-transformer-coupling technology," IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, p. 717–719, 2016.
    [6] J.-S. Syu, C. Meng and G.-W. Huang, "SiGe HBT quadrature VCO utilizing trifilar transformers," IEEE ASSCC Dig, p. 465–468, 2008.
    [7] J.-S. Syu, C. Meng, K.-C. Tsung and G.-W. Huang, "5 GHz quadrature voltage-controlled oscillator using trifilar transformers," Electron. Lett., vol. 44, no. 9, p. 562, 2008.
    [8] F. Song, Y. Zhao, B. Wu, L. Tang, L. Lin and B. Razavi, "16.5 A fractional-N synthesizer with 110fsrms jitter and a reference quadrupler for wideband 802.11ax," IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, p. 264–266, 2019.
    [9] J.-S. Syu, H.-L. Lu and C. Meng, "A 0.6-V 30 GHz CMOS quadrature VCO using microwave 1:1:1 trifilar transformer," IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 88-90, 2012.
    [10] K. Yamamoto, "A 1.8-V operation 5-GHz-band CMOS frequency doubler using current-reuse circuit design technique," IEEE J. Solid State Circuits, vol. 40, no. 6, pp. 1288-1295, 2005.
    [11] T. Buecher, S. Malz, K. Aufinger and U. R. Pfeiffer, "A 210–291-GHz (8×) frequency multiplier chain with low power consumption in 0.13-μm SiGe," IEEE Microw. Wireless Compon. Lett., vol. 30, no. 5, pp. 512-515, 2020.
    [12] M. Bao, Z. He, T. N. Do and H. Zirath, "A 110-to-147 GHz frequency sixtupler in a 130 nm SiGe BiCMOS technology," 2018 13th European Microwave Integrated Circuits Conference (EuMIC), pp. 105-108, 2018. d
    [13] A. Ergintav, F. Herzel, J. Borngräber, D. Kissinger and H. J. Ng, "An integrated 240 GHz differential frequency sixtupler in SiGe BiCMOS technology," IEEE 17th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), pp. 43-46, 2017.
    [14] Z. S. He, M. Bao, Y. Li, A. Hassona, J. Campion, J. Oberhammer and H. Zirath, "A 140 GHz transmitter with an integrated chip-to-waveguide transition using 130nm SiGe BiCMOS process," Asia-Pacific, Microwave Conference (APMC), pp. 28-30, 2018.
    [15] I. Kallfass, H. Massler, A. Tessmann, A. Leuther, M. Schlechtweg and G. Weimann, "A broadband frequency sixtupler MIMIC for the W-Band with >7 dBm output power and >6 dB conversion gain," IEEE/MTT-S Int.l Microwave Symposium, pp. 2169-2172, 2007.
    [16] M. Bao, T. N. T. Do, D. Kuylenstierna and H. Zirath, "A 135–183GHz frequency sixtupler in 250nm InP HBT," IEEE/MTT-S International Microwave Symposium (IMS), pp. 480-483, 2020.
    [17] W.-C. Lai, S.-L. Jang, H.-A. Yeh and M.-H. Juang, "A low-power injection-locked frequency tripler in 90 nm CMOS technology," IEEE 5th Int. Conf. Integrated Circuits and Microsystems (ICICM), pp. 96-100, 2020.
    [18] M. Bao, R. Kozhuharov and H. Zirath, "A D-band frequency sixtupler MMIC with very low DC power consumption," IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, p. 726–728, 2016.
    [19] A. Kankuppe, S. Park, P. T. Renukaswamy, P. Wambacq and J. Craninckx, "A wideband 62-mW 60-GHz FMCW radar in 28-nm CMOS," IEEE Trans. Microw. Theory Techn., vol. 69, no. 6, pp. 2921-2935, 2021.
    [20] N.-C. Kuo and A. M. Niknejad, "An E-band QPSK transmitter element in 28-nm CMOS with multistate power amplifier for digitally-modulated phased arrays," Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), p. 184–187, 2018.
    [21] X. Liu and H. C. Luong, "A fully integrated 0.27-THz injection-locked frequency synthesizer with frequency-tracking loop in 65-nm CMOS," IEEE J. Solid-State Circuits, vol. 55, no. 4, pp. 1051-1063, 2020.
    [22] S. V. Thyagarajan, S. Kang and A. M. Niknejad, "A 240 GHz fully integrated wideband QPSK receiver in 65 nm CMOS," IEEE J. Solid-State Circuits, vol. 50, no. 10, pp. 2268-2280, 2015.
    [23] F. Herzel, A. Ergintav, J. Borngraeber, H. J. Ng and D. Kissinger, "Design of a low-jitter wideband frequency synthesizer for 802.11ad wireless OFDM systems using a frequency sixtupler," IEEE Int.Symposium on Circuits and Systems (ISCAS), pp. 1-4, 2017.
    [24] Y.-H. Chang, "V-band CMOS injection-locked frequency tripler using differential harmonic current injection technique," Analog Integr Circ Sig Process 109, p. 241–246, 2021.
    [25] B. Razavi, in A study of injection locking and pulling in oscillators," IEEE J. Solid-State Circuits, 2004, pp. 1415-1424.
    [26] Y. -H. H. e. al., "A 77-GHz 2T6R Transceiver With Injection-Lock Frequency Sextupler Using 65-nm CMOS for Automotive Radar System Application," IEEE Trans. Microw. Theory Techn., vol. 64, no. 10, pp. 3031-3048, 2016.
    [27] A. Ergintav, F. Herzel, J. Borngräber, D. Kissinger H. J. Ng, “An integrated 240 GHz differential frequency sixtupler in SiGe BiCMOS technology,” Proc. IEEE 17th Top. Meeting Silicon Monolithic Integr. Circuits RF Syst. (SiRF), pp. 43-45, 2017.
    [28] C.-W. Chang and S.-L. Jang, "An injection-locked frequency quadrupler in 90 nm CMOS Technology," Microw Opt Technol Lett., pp. 266-269, 2013.
    [29] Y. Y. e. al., "A wideband CMOS frequency quadrupler with transformer-based tail feedback loop," IEEE Trans. Circuits Syst., II, Exp. Briefs, vol. 68, no. 4, pp. 1153-1157, 2021.
    [30] K. Park, D. Kim, I. Lee and S. Jeon, "W-Band injection-locked frequency octupler using a push–push output structure," IEEE Microw. Wireless Compon. Lett., vol. 29, no. 12, pp. 822-825, 2019.
    [31] S. Hara, T. Sato, R. Murakami, K. Okada and A. Matsuzawa, "60 GHz injection locked frequency quadrupler with quadrature outputs in 65 nm CMOS process," 2009 Asia Pacific Microwave Conference, pp. 2268-2271., 2009.
    [32] L. Zhang, D. Karasiewicz, B. Cifctioglu and Hui Wu, "A 1.6-to-3.2/4.8 GHz dual-modulus injection-locked frequency multiplier in 0.18μm digital CMOS," 2008 IEEE Radio Frequency Integrated Circuits Symposium, pp. 427-430, 2008.
    [33] E. Monaco, M. Pozzoni, F. Svelto and A. Mazzanti, "Injection-locked CMOS frequency doublers for μ-wave and mm-wave applications," IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1565-1574, 2010.

    QR CODE