簡易檢索 / 詳目顯示

研究生: 謝敬
Ching Hsieh
論文名稱: 6 kW Vienna 整流器之研製
Study and Implementation of a 6 kW Vienna Rectifier
指導教授: 林景源
Jing-Yuan Lin
口試委員: 謝耀慶
Yao-Ching Hsieh
林景源
Jing-Yuan Lin
邱煌仁
Huang-Jen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 64
中文關鍵詞: 維也納整流器三相功率因數修正器微電網系統碳化矽功率元件數位控制
外文關鍵詞: Vienna Rectifier, Three-Phase PFC, Microgrid, SiC-MOSFET, Digital Control
相關次數: 點閱:397下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要在研製輸出功率6 kW、輸入交流電壓220 V、輸出直流電壓800 V之三相功率因數修正器,可應用於微電網系統與電動車充電站等。架構使用Vienna整流器以達成元件數少、架構簡單以及開關耐壓要求低等目的。本文採用一種注入零序訊號的載波脈寬調變做為其控制方式,相比於同樣得到大量使用之空間向量脈寬調變方式,其有調變波形生成容易、不需判斷空間向量區間的特性,同時依然保留空間向量調變方式電壓利用率高之優點。本文先以PSIM模擬軟體建構電路雛型,驗證其數位控制方式之可行性。在實作電路上,選擇德州儀器之TMS320F28335微控制器,以數位控制的方式實現載波脈寬調變。並且選用SiC碳化矽功率元件作為電路架構中之功率開關,實作一部具同步整流功能之高功率三相Vienna整流器。


This thesis aims to study and design a three-phase rectifier with 6 kW output power, 220 V input AC voltage and 800 V output voltage, which could be used on microgrid system and EV charging station. The rectifier applied Vienna topology to achieve the goal of few components, easy structure and low voltage stress on MOSFET. This thesis uses a variant of Carrier-Based PWM as the control scheme. Compare to Space Vector PWM, the modulation waveform of Carrier-Based PWM is easy to produce and there is no need to determine the location of the space vector, but still got the profit of high voltage utilization. This thesis uses simulation software PSIM to construct a prototype of the circuit in order to verify the feasibility of the digital control scheme. In practice, choosing the TMS320F28335 microcontroller from Texas Instrument to achieve Carrier-Based PWM with digital control, choosing SiC component as power MOSFET and making a high power three-phase Vienna rectifier with synchronous rectification.

摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 圖索引 vii 表索引 ix 第一章 緒論 1 1.1研究目的 1 1.2論文大綱 2 第二章 三相功率因數修正器 3 2.1功率因數 3 2.2三相整流器種類 6 2.2.1三相單開關升壓型整流器 6 2.2.2三相三開關雙組升壓型整流器 7 2.2.3三相六開關升壓型整流器 8 第三章 Vienna架構與控制 9 3.1調變技術 9 3.1.1 SPWM正弦脈寬調變 9 3.1.2 SVPWM空間向量脈寬調變 10 3.1.3 CBPWM載波脈寬調變 14 3.2 Vienna電路架構 16 3.3各區間動作原理分析 18 3.3.1區間I 0º~60º ( vR > 0 , vS < 0 , vT > 0 ) 21 3.3.2區間II 60º~120º ( vR > 0 , vS < 0 , vT < 0 ) 24 3.3.3區間III ~ VI動作原理推導 27 3.4數位控制 28 3.4.1數位微控制器規格 28 3.4.2系統控制流程 29 3.4.3 PLL鎖相迴路 30 第四章 硬體電路設計 31 4.1電路規格 31 4.2輸入電感設計 31 4.3輸出電容設計 32 4.4功率開關設計 33 4.4.1 SiC碳化矽元件 33 4.4.2功率開關選擇 34 4.4.3同步整流開關選擇 34 4.5驅動電路設計 35 4.5.1驅動IC 35 4.5.2驅動電壓供應器 36 4.6感測器設計 37 4.6.1交流電流感測器 37 4.6.2交流電壓感測器 38 4.5.3直流電壓感測器 39 第五章 電路模擬與實驗結果 40 5.1模擬結果 40 5.1.1模擬電路圖 40 5.1.2模擬波形 40 5.2實驗結果 42 5.2.1實驗數據 42 5.2.2輸入電壓與輸入電流波形 42 5.2.3輸出電壓漣波與電流漣波 45 5.2.4實際電路圖 47 第六章 結論與未來展望 48 6.1結論 48 6.2未來展望 48 參考文獻 49

[1] 中興電工集團,智慧微電網簡介,
http://www.chem.com.tw/products/%E5%BE%AE%E9%9B%BB%E7%B6%B2%E7%B0%A1%E4%BB%8B
[2] 台灣智慧型電網產業協會,認識智慧電網,
http://www.smart-grid.org.tw/content/smart_grid/smart_grid.aspx
[3] 張永瑞、姜政綸、李奕德,「微電網發展前景及技術剖析」,臺灣能源期刊,第二卷,第三期,第259-278頁,2015年9月
[4] W. Yao, Z. Lv, M. Zhang, and Z. Lin, “A Novel SVPWM Scheme for Vienna Rectifier without Current Distortion at Current Zero-crossing Point,” IEEE 23rd International Symposium on Industrial Electronics (ISIE), 2014, pp. 2349-2353.
[5] O. Dordevic, M. Jones, and E. Levi, “A Comparison of Carrier-Based and Space Vector PWM Techniques for Three-Level Five-Phase Voltage Source Inverters,” IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 609-619, May 2013.
[6] 台灣電力公司,功率因數宣導,
https://www.taipower.com.tw/upload/147/2017111320260157352.pdf
[7] 台灣電力公司,電力品質介紹,
http://info.taipower.com.tw/big/Electric_power_quality/Quality.htm
[8] N. E. A. M. Hassanain, A. Y. M. Abbas, and M. H. Ahmed, “Performance Analysis of Hybrid Electric Vehicle Battery Charger Using Voltage Oriented Control,” International Journal of Scientific & Engineering Research, Vol. 5, Issue 11, pp. 152-157, November 2014.
[9] 電源網,正弦波逆變器中的SPWM調制方式簡介,
http://www.dianyuan.com/upload/community/2017/04/29/1493474609-65524.pdf
[10] M. Zhang, B. Li, L. Hang, L. M. Tolbert, and Z. Lu, “Performance Study for High Power Density Three-Phase Vienna PFC Rectifier by Using SVPWM Control,” Applied Power Electronics Conference and Exposition (APEC), February 2012, pp. 1187-1191.
[11] L. Hang, M. Zhang, B. Li, L. Huang, and S. Liu, “Space vector modulation strategy for VIENNA rectifier and load unbalanced ability,” IET Power Electronics, November 2012, pp. 1400-1405.
[12] R. Burgos, R. Lai, Y. Pei, F. Wang, D. Boroyevich, and J. Pou, “Space Vector Modulator for Vienna-Type Rectifiers Based on the Equivalence Between Two- and Three-Level Converters: A Carrier-Based Implementation,” IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 1888-1898, July 2008.
[13] Y. Jiao, F. C. Lee, and S. Lu, “Space Vector Modulation for Three-Level NPC Converter With Neutral Point Voltage Balance and Switching Loss Reduction,” IEEE Transactions on Power Electronics, vol. 29, no. 10, pp. 5579-5591, October 2014.
[14] H. Ma, Y. Xie, Y. Yang, and Z. Shi, “Voltage Balance Control of Vienna-Type Rectifier Using SVPWM Based On 60-degree Coordinate System,” 17th International Conference on Electrical Machines and Systems (ICEMS), October 2014, pp. 3188-3191.
[15] Yngve Solbakken, Space Vector PWM Intro,
https://www.switchcraft.org/learning/2017/3/15/space-vector-pwm-intro

[16] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple Analytical and Graphical Tools for Carrier Based PWM Methods,” IEEE Power Electronics Specialists Conference, vol. 2, pp. 1462-1471, June 1997.
[17] G. Carrara, S. Gardella, M. Mar.esoni, R. Salutari, and G. Sciutto, “A new multilevel PWM method: A theoretical analysis,” IEEE Trans. Power Electron, vol. 7, pp. 497-505, July 1992.
[18] L. M. Tolbert and T. G. Habetler, “Novel Multilevel Inverter Carrier-Based PWM Method,” IEEE Transactions on Industry Applications, vol. 35, no. 5, pp. 1098-1107, September 1999.
[19] 黃駿,高性能VIENNA整流器的研制,西安理工大學碩士學位論文,2013年。
[20] 羅姆半導體集團,何謂SiC(碳化矽),
http://micro.rohm.com/tw/techweb/knowledge/sic/s-sic/02-s-sic/3669
[21]羅姆半導體集團,SiC-MOSFET的特長,
http://micro.rohm.com/tw/techweb/knowledge/sic/s-sic/04-s-sic/5602
[22]羅姆半導體集團,SiC-MOSFET與Si-MOSFET的區別,
http://micro.rohm.com/tw/techweb/knowledge/sic/s-sic/04-s-sic/5740
[23]Silicon Labs, Si823x Data Sheet,
https://www.silabs.com/documents/public/data-sheets/Si823x.pdf
[24]RECOM, RKZ-xx2005D Data Sheet,
http://www.recom-power.com/pdf/Econoline/RKZ-xx2005D.pdf
[25]LEM, Current transducer CKSR series,
https://www.lem.com/sites/default/files/products_datasheets/cksr_series.pdf
[26]TI Instruments, LM1117 Data Sheet,
http://www.ti.com/lit/ds/symlink/lm1117.pdf

無法下載圖示 全文公開日期 2023/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE