簡易檢索 / 詳目顯示

研究生: 莊舜傑
Shun-Chieh Chuang
論文名稱: 二次熱處理與鈦酸鈣添加對透輝石玻璃陶瓷微波介電材料的燒結與特性影響
Sintering Behavior and Electrical Properties of Diopside Glass-ceramic under Two-stage Heat Treatment and CaTiO3 Addition
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 朱立文
none
蘇裕軒
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 86
中文關鍵詞: 透輝石玻璃陶瓷微波介電二次熱處理頻率溫度係數
外文關鍵詞: glass-ceramic, microwave material
相關次數: 點閱:236下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要將透輝石相玻璃粉末,利用二次熱處理方法,希望提升其燒結緻密性與微波特性。本研究主要先將氧化鎂、氧化鈣、氧化矽、氧化鋯粉末,依比例MgO-CaO-2SiO2混合,之後使粉末於1500oC熔融並爐冷,爐冷後再研磨過的玻璃粉末,於溫度範圍800℃至848℃之間進行持溫5分鐘的熱處理,研究預結晶對於玻璃陶瓷燒結特性影響,而後結晶的玻璃粉末再經過球磨與壓錠,並於960℃進行持溫2小時的燒結。實驗並透過熱分析儀、電子顯微鏡、X-Ray分析儀與電性量測探討其成核溫度、微觀結構、相變化以及介電特性。其中,DTA顯示於830℃出現第一放熱峰,對比XRD圖譜可清楚看出玻璃粉末於832℃~848℃下進行熱處理5分鐘,出現氧化鋯峰值,此結果代表玻璃粉末於830℃時進行熱處理,可出現氧化鋯成核現象。,玻璃粉末在800℃~824℃熱處理持溫五分鐘,之後在大氣下燒結溫度960℃時,燒結後的試片發生燒結緻密度不佳(密度介於2.1~2.4 g/cm3) ,孔隙過多導致品質因子介於1654~1754 GHz之間,介電常數低,約4.89~5.75之間,另外若發現粉末在832℃~848℃熱處理持溫五分鐘,而後在大氣下燒結溫度960℃時,可以獲得高緻密度的樣品(密度大於3 g/cm3),品質因子高達10440 GHz,介電常數7.2,且對比未熱處理而直接於960℃的試片,品質因子為8464 GHz,介電常數為7.35,結果玻璃粉末於832~848℃進行第一階段熱處理,玻璃粉末內出現結晶現象,而後第二階段燒結的樣品呈現高緻密性,並提升品質因子與介電常數。
    論文另一部分,若將第一階段熱處理848℃持溫五分鐘後的玻璃粉末,摻雜2.5、5、7.5、10、12.5、15 mol%鈦酸鈣後,希望修正溫度頻率係數。結果發現,熱處理完後的樣品摻雜鈦酸鈣後,從XRD可看出鈦酸鈣含量逐漸增加,電性結果顯示,隨著添加鈦酸鈣含量的提高,介電常數則是從7.74上升到9.64,溫度頻率係數則是從-65.45 ppm/℃改善至-26.9 ppm/℃,品質因子則降低至3291 GHz,乃因鈦酸鈣具有高介電常數、正溫度係數,而品質因子降低乃因鈦酸鈣品質因子低所導致。


    The CaMgSi2O6 glass-ceramic with low dielectric constant was investigated using low temperature co-fired ceramic capacitors (LTCC).
    The CaCO3-Mg(OH)2-2SiO2 and ZrO2, nucleating agent, were mixed, and the resulting powders were melted at 1500℃, furnace cooling and ball milling. Glass frits heat treated at different temperatures from 800℃to 848℃ for 5 mins forms, and the pellets fabrication sintered at 960℃ for 2 hours were studied. The nucleation, Phase evolution, microstructures and dielectric properties of CaMgSiO6 glass-ceramics were analyzed by using DTA, XRD spectroscopy, scanning electron microscopy and electrical property measurements.
    The DTA result shows that the first exothermic peak appears at the 830℃. Comparing the XRD pattern of the glass frits heat-treating from 832℃ to 848 ℃, the XRD reveal the ZrO2 peak in it, indicating that the ZrO2 nucleating agent firstly nucleate in the glass frits. However, the ZrO2 peak never appears in the XRD pattern due to the non-nucleation. Then, the densities and dielectric properties of the pellets using glass frits heat treated at 800 ℃ to 824 ℃ show the low densities (2.1~2.4 g/cm3), low dielectric constants (4.89~5.75) and low quality factors(1654~1754 GHz) due to the high pores in the pellets. In addition, the pellets using glass frits heat treating at 832 ℃ to 848 ℃ show that the high densities (>3 g/cm3), high dielectric constants (~7.2) and high quality factors (8570~10440 GHz), indicating that the ZrO2, nucleating agents, can be obtained in the glass frits with second heat treatment of 832℃ to 848 ℃.
    Furthermore, we try to modify the temperature coefficient of resonant by using glass frits heat treated at 848℃ for 5 mins with CaTiO3 powder of 2.5 mole%, 5 mole%、7.5 mole%、10 mole%、12.5 mole% and 15mol% additions. The XRD patterns show the increase amount of CaTiO3 peak. The dielectric properties show that the enhanced dielectric constant and improved τf can be attributed to the high dielectric constant and positive τf of CaTiO3 phase. However, the CaTiO3 powders added in the MgCaSi2O6 glass-ceramic show the decrease of quality factors due the low quality factors of CaTiO3 phase.

    中文摘要 II Abstract IV 圖目錄 III 表目錄 VII 第一章 緒論 1 1.1 研究背景 1 第二章 文獻與原理 3 2.1介電微波材料低溫共燒陶瓷的發展 3 2.2微波介電材料的原理 10 2.2.1介電原理與性質 10 2.2.2品質因子 12 2.2.3共振頻率溫度係數 15 2.3燒結原理 17 2.3.1玻璃的形成 17 2.3.2 成核機制 20 2.3.3玻璃陶瓷之製程 26 2.3.4陶瓷體燒結 28 2.4透輝石結構 31 第三章 實驗流程與分析方法 34 3.1實驗程序 34 3.2實驗儀器與規格 41 3.3材料性質檢測手法 42 第四章 結果與討論 48 4.1 透輝石相進行不同溫度之熱處理分析結果 48 4.1.1透輝石相經過不同熱處理溫度之密度分析 51 4.1.2透輝石相經過不同熱處理溫度之XRD分析 54 4.1.3透輝石相經過不同熱處理溫度之SEM、TEM微觀分析 56 4.1.4透輝石相經過不同熱處理溫度之電性分析 60 4.2透輝石相摻雜鈦酸鈣改善溫度穩定性分析結果 63 4.2.1透輝石相摻雜鈦酸鈣改善溫度穩定性之密度分析 64 4.2.2透輝石相摻雜鈦酸鈣改善溫度穩定性之XRD分析 65 4.2.3透輝石相摻雜鈦酸鈣改善溫度穩定性之電性分析 74 第五章 結論 76 第六章 未來展望 78 第七章 參考文獻 80

    1. J. B. Lim, K. H. Cho, S. Nahm, J. H. Paik, J. H. Kim, “Effect of BaCu(B2O5) on the sintering temperature and microwave dielectric properties of BaO-Ln2O3-TiO2 ceramics.” Materials Research Bulletin, 41(10): P. 1868-1874, (2006).
    2. T. Okawa, “The development of a multilayer dielectric filter using low temperature fired microwave ceramic.” Sumitomo search Vol. 47,P 117 (1991).
    3.J. M. Osepchuk, “A History of Microwave Heating Applications,” IEEE Trans.
    Microwave Theory & Tech, MTT-32, Vol. 9, P. 1200-1224, (1984).
    4. R. D. Richtmyer, “Dielectric Resonator”, Japanese Journal of Applied physic
    cs, Vol. 10, P. 391-398, (1939).
    5. A. Okaya,“The Rutile Microwave Resonator”, Proc. IRE., Vol. 45, P. 1921, (1960).
    6. H. M. O’Bryan, J. Thomson, J. K. Plourde. “A new BaO-TiO2 compound with temperature-Stable High Permittivity and Low Microwave Loss.“ Journal of American Ceramic Society, Vol. 57, P. 450-453, (1974).
    7. M. H. Weng, C. L. Huang, “Single Phase Ba2Ti9O20 Microwave dielectric Ceramics prepared by low temperature liquid phase Sintering“ Japanese Journal of Applied Physics, Vol 39, P. 450-453, (1974).
    8. M. H. Weng*, T. J. Liang, C. L. Huang, “Lowering of sintering temperature and Microwave dielectric properties of BaTi4O9 ceramics prepared by the Polymeric precursor method“ Journal of the European Ceramic Society, Vol. 22, P. 1693–1698, (2002).
    9. S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, “Dielectric Properties at Microwave Frequencies of the Ceramics in the BaO-Sm2O3-TiO2 System, ”Presented at the 87th Annual meeting of the American Ceramic Society, Cincinnati, OH, May 6,(1985). (Electronics Division , paper No.15-E-85).
    10. P. C. Osbond, R. W. Whatmore, F. W. Alinger, “The Properties and Microwave Application of Zirconium Titanate Stannate Ceramics“ Brit. Ceram. Proc., Vol.36, P. 167-178, (1985).
    11. T. Yamaguchi, Y. Komatsu, T. Otobe, Y. Murakami, “Newly Developed Ternary (CaSr、Ba)Zirconate Ceramic System for Microwave Resonators“ Ferroelectrics, Vol. 27., P. 273-276, (1980).
    12. A. Ioachim, M. I. Toacsan, L. Nedelcu, M. G. Banciu, C. A. Dutu, E. Andronescu, S. Jinga, “Thermal Treatments Effects on Microwave Dielectric Properties of Ba(Zn1/3Ta2/3 )O3Ceramics.” Romanian Journal of Information Science and Technology, Vol. 10, P. 261-268, (2007).
    13. M. Takata, K. Kageyama, “Microwave Characteristies of A(B3+1/2B5+1/2)O3 Ceramics(A=Ba, Ca, Sr;B3+=La, Nd, Sm, Yb;B5+=Nb, Ta)” Journal of American Ceramic Society, Vol. 72, P.1955-1959, (1990).
    14. J. S. Kim, M. E. Song, M. R. Joung, J. H. Choi, S. Nahm, “Effect of B2O3 addition on the sintering temperature and microwave dielectric properties of Zn2SiO4 ceramics” Journal of the European Ceramic Society, Vol. 30, P. 375-379, (2010).
    15. J. Y. Ha, J. W. Choi, S. J. Yoon, D. J. Choi, K. H, Yoon, H. J. Kim, “Microwave dielectric properties of Bi2O3-doped Ca[(Li1/3Nb2/3)1-xTix]O3 Ceramics” Journal of the European Ceramic Society, Vol. 23, P. 2413–2416, (2003).
    16. M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, J. H. Paik, “Microstructure and Microwave dielectric properties of the Li2CO3-Added Sr2V2O7 Ceramics.“ Journal of American Ceramic Society, Journal of American Ceramic Society, Vol. 93.[8], P. 2132-2135, (2010).
    17. R. Lebourgeoisa, S. Dugueyb, J. P. Gannea, J. M. Heintz, “Influence of V2O5 on the magnetic properties of nickel-zinc-copperferrites.“ Journal of Magnetism and Magnetic Materials, Vol. 312, P.328-330, (2007).
    18. S. F. Wang, Thomas C. K. Yang, Y. R. Wang, Y. Kuromitsu, “Effect of Glass composition on the densification and dielectric properties of BaTiO3 ceramic” Ceramics International, Vol. 27, P.157-162, (2001).
    19. Q. L. Zhang, H. Yang, J. X. Tong, “Low-temperature firing and microwave dielectric properties of MgTiO3 ceramics with Bi2O3-V2O5” Material Letters, Vol. 60, P. 1188-1191, (2006).
    20. Y. Imanka, N. Kamehara, “Influence of shrinkage mismatch between copper and ceramics on dimensional control of the multilayer ceramic circuit board.“ Journal of American Ceramic Society. Jpn. Int. Ed., Vol. 100, P. 558–561, (1992).
    21.J. I. Steinberg, S. J. Horowitz, R. J. Bacher, “Low-temperature co-fired tape dielectric material systems for multilayer interconnections advances in ceramic“ In Multilayer Ceramic Devices, 19, ed. J. B. Blum, W. R. Canon, American Ceramic Society, Westerville, OH, P. 31–39, (1986).
    22. J. J. Jean, Y. C. Fang, “ Devitrification kinetics and mechanism of K2O–CaO–SrO–BaO-B2O3–SiO2 glass–ceramic” Journal of American Ceramic Society, Vol.84, P. 1354–1360, (2001).
    23. S. X. Dai, R. F. Huang, D. L. Wilcox, “Use of titanates to achieve a temperature stable low-temperature co-fired ceramic dielectric for wireless application“ Journal of American Ceramic Society, Vol. 85, P. 828–832, (2002).
    24. R. R. Tummala, “Ceramic and glass-ceramic packaging in the 1990s.” Journal of American Ceramic Society, Vol. 74, P. 895–908, (1991).
    25. C. R. Chang, J. J. Jean, “Crystallization kinetics and mechanism of low dielectric, low-temperature, cofirable CaO–B2O3–SiO2 glass–ceramics“ Journal of American Ceramic Society, Vol. 82, P. 1725–1732, (1999).
    26. H. Jantunen, R. Rautioaho, A. Uusim¨aki, S. Lepp¨avuori, “Compositions of MgTiO3–CaTiO3 ceramic with two borosilicate glasses for LTCC technology” Journal of the European Ceramic Society, Vol. 20, P. 2331–2336, (2000).
    27. R. Umemura, H. Ogawa, H. Ohsato, A. Kan, A. Yokoi, “ Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic” Journal of the European Ceramic Society, Vol. 25, P. 2865–2870, (2005).
    28. R. Umemura, H. Ogawa, H. Ohsato, A. Kan, “Low-temperature sintering microwave dielectric properties relations in Ba3(VO4)2 ceramic” J. Alloy. Compd, Vol. 424, P. 388–393, (2006).
    29. J. J. Bian, D. W. Kim, K. S. Hong, “Glass-free LTCC microwave dielectric ceramics.“ Mater. Res. Bull., Vol. 40, P. 2120–2129, (2005).
    30. E. S. Kim, S. H. Kim, B. I. Lee, “ Low-temperature sintering and microwave dielectric properties of CaWO4 ceramics for LTCC applications.“ Journal of the European Ceramic Society, Vol. 26, P. 2101–2104, (2006).
    31. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida, H. Sugiura, “Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics.“ Key Eng. Mater., Vol. 269, P. 199–202, (2004).
    32. M. E. Song, J. S. Kim, M. R. Joung, S. Nahm, “Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics.“ Journal of American Ceramic Society, Vol. 91(8), P. 2747–2750, (2008).
    33. Q. L. Zhang, H. Yang, H. P. Sun, “A new microwave ceramic with low-permittivity for LTCC applications” Journal of the European Ceramic Society, Vol. 28, P. 605–609, (2008).
    34. Umayahara et al.,“Glass Ceramics Dielectric Material and Sintered Glass“ Ceramics, Pat. 6649550. Nov. 18, (2003)
    35.Vernon John著,蔡希杰譯,工程材料基礎篇第三版,俊傑書局股份有限公司, (2001).
    36. W. D. Kingery, H. K. Brown, D. R. Uhlmann, “Introduction to Ceramics,” Academic Press, John Wiley & Sons (1975).
    37. W. D. Kingery, H. K. Brown, D. R. Uhlmann, “Introduction to Ceramics,” Academic Press, John Wiley & Sons (1975).
    38.吳朗,電子陶瓷-介電陶瓷,全欣出版,民國83.
    39.汪建民主編, 陶瓷技術手冊(下), 中華民國粉末冶金協會,1994.
    40. W. Holand, V. Rheinberger, M. Schweiger, “Control of nucleation in glass ceramics” Phil. Trans. R. Soc. Lond. A, Vol. 361, P. 575–589, (2003).
    41.Kingery Bowen Uhlmann著,陳皇鈞譯,陶瓷材料概論(下冊),曉園出版, (1988).
    42T. I. Barry, J. M. Cox, R. Morrell, “Cordierite glass-ceramics-effect of Ti02 and
    Zr02 content on phase sequence during heat treatment,“ Journal of Materials Science, Vol. 13, P. 594-610, (1978).
    43. W. Holand, V. Rheinberger, M. Schweiger, “Control of nucleation in glass ceramics” Phil. Trans. R. Soc. Lond. A, Vol. 361, P. 575–589, (2003).
    44.陳文照, 廖金喜, 蔡明雄, 蔡丕樁, 材料科學與工程(第三版), 全華圖書, 1996.
    45.汪建民主編, 陶瓷技術手冊(下), 中華民國粉末冶金協會,1994.
    46.N. M. Chairman, “Nomenclature of pyroxenes” Canadian Mineralogist, Vol. 27, P. 143-156, (1989).
    47.王守誠,“澎湖群島斜輝石偉晶之化學特性在岩漿演化之應用”,國立成功大學碩士論文,中華民國96年6月.
    48. W. A. Deer, R. A. Howie, J. Zussman著,謝宇平、李鴻超、賀義興等譯校《造岩礦物﹐二卷A.單鏈矽酸鹽》(第二版)﹐地質出版社﹐北京﹐1983。(W. A. Deer, R. A. Howie, J. Zussman, Rock-Forming Minerals, Vol. 2A﹐Single-Chain Silicate, 2nd Edition, Longman, 1978.)
    49.http://zh.wikipedia.org/wiki/%E7%BA%BF%E8%83%80%E7%B3%BB%E6%95%B0 維基百科, 線性熱膨脹係數
    50. A. Karamanov, M. Pelino “Induced crystallization porosity and properties of sintered diopside and wollastonite glass-ceramics.” Journal of the European ceramic society, Vol.28, P. 555-562, (2008)
    51. Jurn W. P. Schmelzer, “Nucleation Theory and Applications” (2005)
    52. C. L. huang, M. H. Weng, C. Y. Lion, C. C. Wu, “Low temperature sintering and microwave dielectric properties of Ba2Ti9O20 ceramics using glass additions.” Materials Research Bulletin, Vol. 35 (14-15), P. 2445-2456, (2000)
    53. M. Mohammadi, P. Alizadeh, Z. Atlasbaf, “effect of frit size on sintering, crystallization and electrical properties of wollastonite glass-ceramics.” Journal of Non-crysyalline Solids, Vol.357, P. 150-156, (2011)
    54. D. C. Woo, H. Y. Lee, J. J. Kim, T. H. Kim, S. J. Lee, “Microwave Dielectric Properties of Doped-MgTiO3 Ceramics” IEEE, (1996)
    55. S. Carbonin, G. Salviulol, R. Munno, “Crystal-Chemical of natural diopside: some geometrical indication of Si-Ti tetrahedral substitution”, Mineralogy and petrology, Vol. 41, No.1, P. 1-10, (1989)
    56. C. L. Huang, M. H. Weng, “Improved high Q value of MgTiO3–CaTiO3 microwave dielectric ceramics at low sintering temperature”, Materials Research Bulletin, Vol. 36, P.2741–2750, (2001)
    57. W. S. Kim, H. T. Hong, E. S. Kim, K. H. Yoon, Jpn. J. Appl Phys. 37 5367 (1998)

    QR CODE