簡易檢索 / 詳目顯示

研究生: 杜威德
Wei-te Tu
論文名稱: 功能複合板之振動與挫屈分析
Vibration and Buckling Analyses of Functionally Graded Plates
指導教授: 廖崇禮
Chung-Li Liao
口試委員: 呂森林
Sen-Lin Lu
劉見賢
Chien-Hsien Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 73
中文關鍵詞: 功能梯度板
外文關鍵詞: Functionally Graded Plates
相關次數: 點閱:192下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主旨為根據一階剪變形板理論(first-order shear deformation plate theory)和高階剪變形板理論(higher-order shear deformation plate theory)之基礎架構,分析簡支撐矩形功能梯度板的自然振動頻率、模態與挫屈負荷。首先利用板理論之位移場及應變與位移的關係,求得應力場之合應力與合力矩,進而建立功能梯度板的本構方程式(constitutive equations)。接著使用漢米爾頓原理 (Hamilton’s principle)與有限元素的近似解來來推導功能梯度板之有限元素運動方程式。本文並根據級數解(series solution)之理論,藉由假設滿足邊界條件之奈維爾解(Navier’s solution)來建立功能梯度板之級數解運動方程式。

利用本文之有限元素分析模式與級數解模式,與求解特徵值與特徵向量的方法,可以求得功能梯度板之自然振動頻率、振動模態與挫屈負荷。本文針對陶瓷、功能梯度材料與金屬等不同材料的組合,探討各種參數與起始應力對功能梯度板之自然振動頻率與挫屈負荷的影響,結果並與文獻比較以驗證本文分析模式的準確性。


Based on the first-order and higher-order shear deformation plate theories, the present study develops a finite element model and two series-solution models to analyze the natural frequencies, vibration modes and buckling loads of simply-supported rectangular plates of functionally graded materials(FGMs). First, this study uses the displacement fields and the stress-strain relations to develop the constitutive equations of stress and moment resultants. Next, substituting the constitutive equations into the Hamilton’s principle, this study obtains the present finite element model for the FGM plates. Also this study applies the Navier’s solution to obtain the equations of FGM plates for free vibration and buckling analyses.

The present finite element model and the series solution models are used to find the natural frequencies, vibration modes and buckling loads of the FGM plates. Considering different composition of ceramic, FGM and metal, this study also investigates the effects of various parameters, such as aspect ratio, the thickness of FGM and initial stress, on the natural frequencies and buckling loads of FGM plates. The present results are compared with that in literature to verify the accuracy of the present models.

摘要Ⅰ ABSTRACTⅡ 誌謝Ⅲ 目錄Ⅳ 附圖索引Ⅶ 附表索引Ⅷ 符號表Ⅹ 第一章 緒論1 1.1 前言1 1.2 文獻回顧2 1.3 研究目的與內容4 第二章 功能梯度材料介紹與特性6 2.1 功能梯度材料之概念6 2.2 功能梯度材料之應用8 第三章 以一階板理論推導功能梯度板之管制方程式9 3.1 一階剪變形板理論推導功能梯度板運動方程式9 3.1.1 功能梯度板之位移場11 3.1.2 功能梯度板之應力與應變關係11 3.1.3 功能梯度板之合應力與合力矩12 3.1.4 以漢米爾頓原理推導運動方程式13 3.2 簡支撐功能梯度板的級數解19 3.2.1 十字疊層複合板的邊界條件與級數解20 3.2.2 以級數解之特徵方程式求解自然振動頻率23 3.2.3 以級數解之特徵方程式求解挫屈負荷24 3.3 功能梯度板的有限元素方程式推導25 3.3.1 一階剪變形疊層板有限元素建立及內插函數25 3.3.2 推導有限元素方程式29 3.3.3 以特徵方程式求解自然振動頻率與挫屈負荷31 第四章 以高階板理論推導功能梯度板之管制方程式32 4.1 高階剪變形板理論推導功能梯度板運動方程式32 4.1.1 功能梯度板之位移場32 4.1.2 功能梯度板之應力與應變關係34 4.1.3 以漢米爾頓原理推導運動方程式35 4.2 簡支撐功能梯度板的級數解38 4.2.1 十字疊層複合板的與邊界條件與級數解38 4.2.2 以級數解之特徵方程式求解自然振動頻率42 4.2.3 以級數解之特徵方程式求解挫屈負荷43 第五章 功能梯度板實例分析與討論45 5.1 功能梯度板之材料性質函數45 5.2 有限元素之數值分析48 5.2.1 功能梯度板有限元素分析模型48 5.2.2 體積分率指數對FGM板的自然振動頻率之影響49 5.2.3 體積分率指數對FGM板的挫屈負荷之影響58 5.2.4 功能梯度板厚度對自然振動頻率之影響61 5.2.5 起始應力對FGM板的自然振動頻率之影響65 第六章 結論與建議69 參考文獻72

1. G. BAO and L. Wang, “Multiple Cracking in Functionally Graded Ceramic/ Metal Coatings”, International Journal Solids and Structures, Vol. 32, No. 19, Pages 2853-2871, 1995.

2. N. Noda, “Thermal Stress in Functionally Graded Material”, Journal of Thermal Stress, Vol. 22, Pages 477-512, 1999.

3. T. Y. Ng, K. Y. Lam, K.M. Liew and J. N. Reddy, “Dynamic stability
analysis of functionally graded cylindrical shells under periodic axial
loading “, International Journal of Solids and Structures, Vol 38, Pages 1295-1309, 2001.

4. H. S. Shen, “Postbuckling analysis of axially loaded functionally graded cylindrical panels in thermal environments”, International Journal of Solids and Structures, Vol. 39, Issue 24, Pages 5991-6010, 2002.

5. L. S. Ma and T. J. Wang, “Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory”, International Journal of Solids and Structures, Vol. 41, Issue 1, Pages 85-101, 2004.

6. H. S. Shen and K. M. Liew, “Postbulkling of Axially Loaded Functionally Graded Cylindrical Panels with Piezoeletric Actuators in Thermal Enviroment”, Journal of Engineering Mechanics, Vol. 130, No. 8, Pages 982-995, 2004.

7. N. Noda, M. Ishihara and N. Yamamoto, “Two-Crack Propagation Paths in a Functionally Graded Materials Plate Subjected to Thermal Loadings”, Journal of Thermal Stress, Vol. 27, Pages 457-469, 2004.

8. M. C. Ray and H. M. Sachade, “Finite element analysis of smart functionally graded plates”, International Journal of Solids and Structures, In Press, Corrected Proof, Available online , 2005.

9. S. H. Chi and Y. L. Chung, “Mechanical behavior of functionally graded material plates under transverse load—Part I Analysis”, International Journal of Solids and Structures, Vol. 43, Issue 13, Pages 3657-3674, 2006.

10. S. H. Chi and Y. L. Chung, “Mechanical behavior of functionally graded material plates under transverse load—Part II Numerical results”, International Journal of Solids and Structures, Vol. 43, Issue 13, Pages 3675-3691, 2006.

11. 陳詞章、鄭偉盛、戴仲強、廖譽翔,“功能複合板之振動”。中國機械工程學會第二十三屆全國學術研討會論文集 C3-021,2006。

12. 郭衛紅,汪濟奎編著,“現代功能材料及其應用”,曉園出版社, 2006。
 
13. J. N. Reddy, “Mechanics of laminated Composite Plates : theory and analysis” , Second Edition, Boca Raton : CRC Press, 2004.

14. J. N. Reddy ,“ An introduction to the Finite Element Method,” Third Edition., New York:McGraw Hill, 2006.

15. K. H. Lo, R. M. Christensen and E. M. Wu, “High-order theory of plate deformation-2. Laminated plates”, American Society of Mechanical Engineers, No. 77 -WA/APM-24 , 1977.

16. C. Li, G. J. Weng, Z. Duan and Z. Zou, “Dynamic stress intensity factor of a functionally graded material under antiplane shear loading”, Acta Mechanica, Vol.149, Numbers 1-4, Pages1-10, 2001.

QR CODE