簡易檢索 / 詳目顯示

研究生: 陳炯博
Jiong-Bo Chen
論文名稱: 低分子量丙烯酸酯共聚物作為封端劑合成熱塑 性聚氨酯並應用於無縫貼合尼龍織物
Synthesis of Thermoplastic Polyurethane by Low Molecular Weight Acrylate Copolymer as End-capping Agent for Seamless Bonded Nylon Fabric
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 郭中豐
Chung-Feng Jeffrey Kuo
黃昌群
Chang-Chiun Huang
蘇德利
De-Li Su
黃國賢
Kuo-Shien Huang
張嘉德
Chia-Der Chang
邱智瑋
Chih-Wei Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 115
中文關鍵詞: 熱塑性聚氨酯N,N-二甲基丙烯酰胺聚四氫呋喃MDI
外文關鍵詞: N,N-Dimethylacrylamide, Polytetramethylene Ether Glycol
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Thermoplastic polyurethanes (TPU) 屬於逐步聚合反應,分子量逐步增加,不易控制分子量。然而,TPU的力學強度隨著分子量增加而增加,伴隨而來的是TPU的加工性能(軟化點)隨分子量增加而增加。因此,TPU的分子量控制、力學性能和加工性能存在矛盾的問題。本研究藉由自製封端劑的濃度控制TPU的分子量以及設計封端劑的分子結構增強TPU的氫鍵網路。使TPU在低分子量時,具有低溫的加工性質以及良好的力學性能。首先合成4種N,N-Dimethyl acrylamide (DMAA)濃度的封端劑分別為D03 (DMAA 3.0 wt.%)、D05 (DMAA 5.0 wt.%)、D07 (DMAA 7.0 wt.%)以及D10 (DMAA 10 wt.%)。本研究以Polytetramethylene Ether Glycol (PTMG)與4,4-Methylene diphenyl diisocyanate (MDI)作為原料,分別加入封端劑D03、D05、D07以及D10,採用本體聚合法合成TPU。TPU在FT-IR光譜中分別顯示苯環、氨基甲酸酯以及DMAA的特徵峰;在2268 cm-1附近未顯示-N=C=O-的吸收峰,證明TPU的結構中含有封端劑、PTMG以及MDI的分子結構並且充分反應。在FT-IR光譜,-C=O吸收峰值往低波數移動並分裂為雙重峰。當封端劑的DMAA濃度由3.0 wt.%增加至10 wt.%,產生氫鍵的-C=O(H-bond)面積百分比由41.7 %增加至57.6 %。這個結果證明DMAA提升TPU分子結構的氫鍵數量。TPU的分子量隨著封端劑的DMAA濃度由3.0 wt.%增加至10 wt.%,TPU的分子量由35517 g/mole增加至56103 g/mole。這是因為來自於DMAA分子結構中的N(CH3)2產生的空間位阻效應,抑製封端劑-OH與異氰酸酯基團形成共價鍵。TPU的熔點指的是硬鏈段的熔點(Tmh)。封端劑分子結構中的DMAA濃度增加,TPU的Tmh與ΔH增加。這是因為硬鏈段間氫鍵作用力增強,增加TPU的Tmh與ΔH。當封端劑分子結構的DMAA濃度由3.0 wt.%增加至10 wt.%,拉伸強度由1.4 kg/cm2增加至1.7 kg/cm2,這表示DMAA濃度逐漸增多,氫鍵量逐漸增加,力學性能提高。封端劑分子結構的DMAA濃度由3.0 wt.%增加至10 wt.%;剝離強度由0.9 kg/cm增加至2.2 kg/cm,剪切強度從24 kg/cm2增加至30 kg/cm2。本研究合成的5D10、10D10以及15D10與市售商品Bemis 3405經過50次水洗後的機械性能如下所述。5D10、10D10以及15D10的軟化溫度為130℃至135℃優於Bemis 3405的軟化溫度150℃至170℃。5D10、10D10以及15D10,剝離強度分別為2.1 kg/cm、1.0 kg/cm以及0.5 kg/cm皆優於Bemis 3405的剝離強度0.3 kg/cm。在TPU的剪切強度方面,5D10、10D10以及15D10的剪切強度分別為26 kg/cm2、23 kg/cm2、21 kg/cm2皆優於Bemis 3405的剪切強度17 kg/cm2。本研究合成的TPU經過嚴苛的高溫儲存環境測試以及低溫儲存環境測試剝離強度以及剪切強度皆可與市售產品相提並論。


The thermoplastic polyurethanes (TPU) is synthesized by stepwise polymerization, during which the molecular weight increases stepwise. As a result, it is difficult to control the molecular weight. When the mechanical strength of TPU increases with molecular weight, the processability (softening point) of TPU increases as well. Therefore, the molecular weight control, mechanical properties and processability of TPU are considered contradictory issues. This study used the concentration of self-developed end-capping agent to control the molecular weight of TPU, and designed the molecular structure of end-capping agent to enhance the hydrogen bond network of TPU, so that the TPU at low molecular weight can have low temperature working properties and good mechanical properties. First, this study synthesized the copolymer of end-capping agents at four N,N-Dimethyl acrylamide (DMAA) concentrations, which are D03 (DMAA 3.0 wt.%), D05 (DMAA 5.0 wt.%), D07 (DMAA 7.0 wt.%) and D10 (DMAA 10 wt.%). The Polytetramethylene Ether Glycol (PTMG) and 4,4-Methylene diphenyl diisocyanate (MDI) were used as raw materials in this study, mixed with end-capping agents D03, D05, D07 and D10 respectively, the TPU was synthesized by using mass polymerization. The TPU showed the characteristic peaks of benzene ring, carbamate and DMAA respectively in the FT-IR spectrum. The absorption peak of -N=C=O- was not shown around 2268 cm-1, proving that the structure of TPU contains end-capping agent, and the molecular structures of PTMG and MDI fully react. The absorption peak of -C=O in the FT-IR spectrum moved towards low wave number and split into double peak. When the DMAA concentration of end-capping agent increased from 3.0 wt.% to 10 wt.%, the -C=O(H-bond) area percent of hydrogen bond increased from 41.7 % to 57.6 %. This result proves that the DMAA increases the number of hydrogen bonds of molecular structure of TPU. The molecular weight of TPU increased from 3.0 wt.% to 10 wt.% with the DMAA concentration of end-capping agent, the molecular weight of TPU increased from 35517 g/mole to 56103 g/mole. This is because the steric hindrance effect generated by the -N(CH3)2 in the molecular structure of DMAA inhibited the end-capping agent -OH and -NCO groups from forming covalent bond. The melting point of TPU refers to the melting point of hard segment (Tmh). As the DMAA concentration in the molecular structure of end-capping agent increased, the Tmh and ΔH of TPU also raised. This is because the increase of hydrogen bonding force between hard segments led to the increase of the Tmh and ΔH of TPU. When the DMAA concentration in the molecular structure of end-capping agent increased from 3.0 wt.% to 10 wt.%, the tensile strength increased from 1.4 kg/cm2 to 1.7 kg/cm2, meaning the DMAA concentration increased gradually, Moreover, as the number of hydrogen bonds increased, the mechanical properties were enhanced. When the DMAA concentration in the molecular structure of end-capping agent increased from 3.0 wt.% to 10 wt.%, the peel strength increased from 0.90 kg/cm to 2.2 kg/cm, and the shear strength increased from 24 kg/cm2 to 30 kg/cm2.
The mechanical properties of the synthetic 5D10, 10D10 and 15D10 of this study and commercially available goods Bemis 3405 after 50 times of water washing are described below. The softening temperature of 5D10, 10D10 and 15D10 was 130°C to 135°C, which are better than the softening temperature 150°C to 170°C of Bemis 3405. The peel strengths of 5D10, 10D10 and 15D10 were 2.1 kg/cm, 1.0 kg/cm and 0.5 kg/cm respectively, which are also better than the peel strength 0.3 kg/cm of Bemis 3405. In terms of the shear strength of TPU, the shear strengths of 5D10, 10D10 and 15D10 were 26 kg/cm2, 23 kg/cm2 and 21 kg/cm2 respectively, which are better than the shear strength 17 kg/ cm2 of Bemis 3405. This study also tested the peel strength and shear strength of the synthetic TPU in the harsh high temperature storage environment and the test in the low temperature storage environment. The results are comparable with the commercially available products.

中文摘要 I 英文摘要 III 誌謝 VI 目錄 VII 圖目錄 XII 表目錄 XVI 第1章緒論 1 1.1 熱塑性聚氨酯概述 1 1.1.1.熱塑性聚氨酯簡介 1 1.1.2.熱塑性聚氨酯特性 1 1.2 合成熱塑性聚氨酯的原料 4 1.2.1低聚合度多元醇 4 1.2.2異氰酸酯 5 1.2.3擴鏈劑 6 1.3 熱塑性聚氨酯的基礎化學 7 1.3.1異氰酸酯與醇類化合物的反應 7 1.3.2異氰酸酯與水的反應 8 1.3.3異氰酸酯與含羧基化合物的反應 8 1.3.4異氰酸酯與含胺基化合物的反應 8 1.3.5異氰酸酯與氨基甲酸酯的反應 9 1.3.6異氰酸酯與取代脲的反應 9 1.3.7異氰酸酯的反應活性 9 1.4 熱塑性聚氨酯的聚合方法 11 1.4.1按溶劑區別 11 1.4.2按照加料方是區別 11 1.5 熱塑性聚氨酯與各種基材之黏著理論 13 1.5.1塑膠、橡膠之黏著作用力 13 1.5.2金屬、玻璃、陶瓷之黏著作用力 15 1.5.3織物、木材之黏著作用力 16 1.6 熱塑性聚氨酯的研究現況 17 1.6.1軟鏈段對熱塑性聚氨酯的影響 17 1.6.2硬鏈段對熱塑性聚氨酯的影響 18 1.6.3無機填充料對熱塑性聚氨酯的影響 20 1.6.4生物可分解性熱塑性聚氨酯 22 1.6.5紫外光固化熱塑性聚氨酯 22 1.6.6共混改質 23 1.7 熱塑性聚氨酯的微觀結構及研究方法 25 1.7.1熱塑性聚氨酯的氫鍵作用 25 1.7. 熱塑性聚氨酯的結晶性 26 1.7.3熱塑性聚氨酯的微相分離 26 1.7.4熱塑性聚氨酯微觀結構的研究方法 27 1.8 研究內容與創新性 34 1.8.1研究動機 34 1.8. 研究目的 37 1.8. 創新性 38 第2章實驗方法與檢測 39 2.1 實驗藥品 39 2.2 實驗步驟 41 2.2.1合成工藝探討 41 2.2.1合成封端劑 45 2.2.2合成熱塑性聚氨酯預聚體 46 2.2.3加工貼合織物 47 2.3 檢測項目與儀器 48 2.3.1熱塑性聚氨酯的官能基團與氫鍵狀態檢測 48 2.3.2熱塑性聚氨酯的分子量與分子量分佈檢測 48 2.3.3熱塑性聚氨酯的熱裂解溫度檢測 48 2.3.4熱塑性聚氨酯的熔點與熔融焓檢測 48 2.3.5熱塑性聚氨酯的玻璃轉移溫度與儲存模數檢測 49 2.3.6熱塑性聚氨酯的表面形態檢測 49 2.3.7熱塑性聚氨酯的軟化點檢測 49 2.3.8熱塑性聚氨酯的拉伸強度檢測 49 2.3.9熱塑性聚氨酯的剝離強度檢測 50 2.3.10 熱塑性聚氨酯的剪切強度檢測 50 2.3.11 熱塑性聚氨酯的加嚴條件測試 50 第3章結果與討論 51 3.1 熱塑性聚氨酯的官能基團分析 51 3.2 熱塑性聚氨酯的氫鍵分析 53 3.3 熱塑性聚氨酯的分子量與分佈係數分析 55 3.4 熱塑性聚氨酯的熱裂解溫度分析 59 3.5 熱塑性聚氨酯的熔點與熔融焓分析 63 3.6 熱塑性聚氨酯的玻璃轉移溫度與儲存模數分析 66 3.7 熱塑性聚氨酯的拉伸強度分析 70 3.8 熱塑性聚氨酯的剝離強度與剪切強度性能測試 72 3.9 熱塑性聚氨酯的表面型態分析 74 3.10 熱塑性聚氨酯溫度環境與水洗測試 75 第4章結論與展望 78 4.1 結論 78 4.2 展望 79 參考文獻 80 PUBLICATION LIST 97

1. Petrović, Z. S., Milić, J., Zhang, F., & Ilavsky, J. Fast-responding bio-based shape memory thermoplastic polyurethanes. Polymer 2017; 121: 26-37.
2. Mi, H. Y., Jing, X., Hagerty, B. S., Chen, G., Huang, A., & Turng, L.-S. Post-crosslinkable biodegradable thermoplastic polyurethanes: synthesis, and thermal, mechanical, and degradation properties. Materials & Design 2017; 127: 106-114.
3. Nguyen Dang, L., Le Hoang, S., Malin, M., Weisser, J., Walter, T., Schnabelrauch, M., & Seppälä, J. Synthesis and characterization of castor oil-segmented thermoplastic polyurethane with controlled mechanical properties. European Polymer Journal 2016; 81: 129-137.
4. Gorbunova, M., Komratova, V., Grishchuk, A., Badamshina, E., & Anokhin, D. The effect of addition of low-layer graphene nanoparticles on structure and mechanical properties of polyurethane-based block copolymers. Polymer Bulletin 2019; 1-17.
5. Verstraete, G., Samaro, A., Grymonpré, W., Vanhoorne, V., Van Snick, B., Boone, M. N., Hellemans, T., Van Hoorebeke, L., Remon, J.P., & Vervaet, C. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. International journal of pharmaceutics 2018; 536: 318-325.
6. Costa, V., Nohales, A., Félix, P., Guillem, C., Gutiérrez, D., & Gómez, C. M. Structure-property relationships of polycarbonate diol-based polyurethanes as a function of soft segment content and molar mass. Journal of Applied Polymer Science 2015; 132.
7. Dong, M., Li, Q., Liu, H., Liu, C., Wujcik, E. K., Shao, Q., Ding, T., Ma, X., Shen, C., & Guo, Z. Thermoplastic polyurethane-carbon black nanocomposite coating: fabrication and solid particle erosion resistance. Polymer 2018; 158: 381-390.
8. Li, B., Li, M., Fan, C., Ren, M., Wu, P., Luo, L., Wang, X., & Liu, X. The wear-resistance of composite depending on the interfacial interaction between thermoplastic polyurethane and fluorinated UHMWPE particles with or without oxygen. Composites Science and Technology 2015; 106: 68-75.
9. Dutta, J., Chatterjee, T., Ramachandran, P., & Naskar, K. Exploring the influence of methylene diphenyl diisocyanate as a modifier for ethylene vinyl acetate/thermoplastic polyurethane blends. Polymer-Plastics Technology and Engineering 2018; 57: 1642-1656.
10. Moiz, A., Wang, X. & Padhye, R. Protective cotton fabric by coating of thermoplastic polyurethane combined with PDMS-TMS. in: TTNA 2016. Technical Textiles and Nonwoven Association, 2016, 12-15.
11. Liu, X., Sun, J., Zhang, S., Guo, J., Tang, W., Li, H., & Gu, X. Effects of carboxymethyl chitosan microencapsulated melamine polyphosphate on the flame retardancy and water resistance of thermoplastic polyurethane. Polymer degradation and stability 2019; 160: 168-176.
12. Kang, K. S., Jee, C., Bae, J. H., Jung, H. J., Kim, B. J., & Huh, P. Effect of soft/hard segments in poly(tetramethylene glycol)-polyurethane for water barrier film. Progress in Organic Coatings 2018; 123: 238-241.
13. Zhou, H., Wang, X., Wang, T., Jian, J., Zhou, Z., Zeng, J., Zeng, L., Liu, G. Polyurethane synthetic papers based on different inorganic fillers with water and fire resistance. Macromolecular Materials and Engineering 2019; 304: 1800473.
14. Wang, Y., Yi, J., Peng, X., Ma, X., & Peng, S. Structure-property relationships of novel fluorinated polycarbonate polyurethane films with high transparency and thermal stability. Research on Chemical Intermediates 2019; 45: 845-862.
15. Kasgoz, A., Korkmaz, M., Alanalp, M. B., & Durmus, A. Effect of processing method on microstructure, electrical conductivity and electromagnetic wave interference (EMI) shielding performance of carbon nanofiber filled thermoplastic polyurethane composites. Journal of Polymer Research 2017; 24: 148.
16. Zhang, K., Chermprayong, P., Tzoumanikas, D., Li, W., Grimm, M., Smentoch, M., Leutenegger, S., Kovac, M. Bioinspired design of a landing system with soft shock absorbers for autonomous aerial robots. Journal of Field Robotics 2019; 36: 230-251.
17. Vala, A. U., Rane, A. V., Kanny, K., Abitha, V. K., & Thomas, S. Ageing behavior of polyurethane based blends and interpenetrating polymer networks. in: polyurethane polymers, 2017. Amsterdam, Netherlands: Elsevier, 261-281.
18. Oertel, G. & Abele, L. Polyurethane handbook: Chemistry, raw materials, processing, application, properties. 1985. Munich: Hanser Publishers.
19. Sultan, W., & Busnel, J. P. Kinetic study of polyurethanes formation by using differential scanning calorimetry. Journal of thermal analysis and calorimetry 2006; 83: 355-359.
20. Cordeiro, N., Belgacem, M. N., Gandini, A., & Neto, C. P. Urethanes and polyurethanes from suberin: 1. kinetic study. Industrial Crops and Products 1997; 6: 163-167.
21. Burel, F., Feldman, A., & Bunel, C. Hydrogenated hydroxy-functionalized polyisoprene (H-HTPI) and isocyanurate of isophorone diisocyanates (I-IPDI): reaction kinetics study using FTIR spectroscopy. Polymer 2005; 46: 15-25.
22. Cho, Y. K., & Hwang, S.H. Diisocyanate type effects on flexibility and coating performance of UV-curable hard coatings based on tetrafunctional urethane acrylates. Polymer Bulletin 2018; 75: 5795-5807.
23. Król, P., Galina, H., & Kaczmarski, K. A three parameter kinetic model of formation of linear polyurethane from 2,4-toluenediisocyanate and butane-1,4-diol. Macromolecular theory and simulations 1999; 8: 129-136.
24. Petrović, S., E. Yilgor, C. Kosak, G. L. Wilkes, M. Zhang, I. Yilgor. Effect of soft segment molecular weight on tensile properties of poly(propylene oxide) based polyurethaneureas. Polymer 2012; 53: 4614-4622.
25. Rueda-Larraz, L., d’ Arlas, B. F., Tercjak, A., Ribes, A., Mondragon, I., & Eceiza, A. Synthesis and microstructure-mechanical property relationships of segmented polyurethanes based on a PCL-PTHF-PCL block copolymer as soft segment. European Polymer Journal 2009; 45: 2096-2109.
26. Petrović, Z. S., Hong, D. P., Javni, I., Erina, N., Zhang, F. & Ilavský, J. Phase structure in segmented polyurethanes having fatty acid-based soft segments. Polymer 2013; 54: 372-380.
27. Xu, Y., Petrovic, Z., Das, S., & Wilkes, G. L. Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments. Polymer 2008; 49: 4248-4258.
28. Eceiza, A., de la Caba, K., Kortaberria, G., Gabilondo, N., Marieta, C., Corcuera, M. A., & Mondragon, I. Influence of molecular weight and chemical structure of soft segment in reaction kinetics of polycarbonate diols with 4, 4’-diphenylmethane diisocyanate. European polymer journal 2005; 41: 3051-3059.
29. Sultan, W., and Busnel, J. P. Kinetic study of polyurethanes formation by using differential scanning calorimetry. Journal of thermal analysis and calorimetry 2006; 83: 355-359.
30. Kulkarni, P., Ojha, U., Wei, X., Gurung, N., Seethamraju, K., & Faust, R. Thermal and mechanical properties of polyisobutylene-based thermoplastic polyurethanes. Journal of Applied Polymer Science 2013; 130: 891-897.
31. Kojio, K., Nakashima, S., & Furukawa, M. Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes. Polymer 2007; 48: 997-1004.
32. He, Y., Zhang, X., & Runt, J. The role of diisocyanate structure on microphase separation of solution polymerized polyureas. Polymer 2014; 55: 906-913.
33. Koberstein, J. T., Galambos, A. F., & Leung, L. M. Compression-molded polyurethane block copolymers. 1. microdomain morphology and thermomechanical properties. Macromolecules 1992; 25: 6195-6204.
34. Seefried, C. G., Koleske, J. V., & Critchfield, F. E. Thermoplastic urethane elastomers. I. effects of soft-segment variations. Journal of Applied Polymer Science 1975; 19: 2493-2502.
35. Schneider, N. S., & Matton, R. W. Thermal transition behavior of polybutadiene containing polyurethanes. Polymer Engineering & Science 1979; 19: 1122-1128.
36. Nakamae, K., Nishino, T., Asaoka, S., & Sudaryanto. Microphase separation and surface properties of segmented polyurethane-Effect of hard segment content. International journal of adhesion and adhesives 1996; 16: 233-239.
37. Garrett, J. T., Xu, R., Cho, J., & Runt, J. Phase separation of diamine chain-extended poly(urethane) copolymers: FTIR spectroscopy and phase transitions. Polymer 2003; 44: 2711-2719.
38. Chang, Z., Zhang, M., Hudson, A. G., Orler, E. B., Moore, R. B., Wilkes, G. L., & Turner, S. R. Synthesis and properties of segmented polyurethanes with triptycene units in the hard segment. Polymer 2013; 54: 6910-6917.
39. Kultys, A., Rogulska, M., Pikus, S., & Skrzypiec, K. The synthesis and characterization of new thermoplastic poly(carbonate-urethane) elastomers derived from HDI and aliphatic-aromatic chain extenders. European Polymer Journal 2009; 45: 2629-2643.
40. Tang, Q., He, J., Yang, R., & Ai, Q. Study of the synthesis and bonding properties of reactive hot-melt polyurethane adhesive. Journal of Applied Polymer Science 2013; 128: 2152-2161.
41. Malik, M., & Kaur, R. Influence of aliphatic and aromatic isocyanates on the properties of poly(ether ester) polyol based PU adhesive system. Polymer Engineering & Science 2018; 58: 112-117.
42. Fuensanta, M., & Martín-Martínez, J. M. Thermoplastic polyurethane coatings made with mixtures of polyethers of different molecular weights with pressure sensitive adhesion property. Progress in Organic Coatings 2018; 8: 148-156.
43. Zhang, Z., Luo, N., Wang, Z., & Luo, Y. Polyglycidyl nitrate (PGN)-based energetic thermoplastic polyurethane elastomers with bonding functions. Journal of Applied Polymer Science 2015; 132.
44. Luo, Z., Cai, X., Hong, R. Y., Wang, L. S., & Feng, W. G. Preparation of silica nanoparticles using silicon tetrachloride for reinforcement of PU. Chemical engineering journal 2012; 187: 357-366.
45. Chen, L., Lai, J. S., Fu, X. N., Sun, J., Ying, Z. F., Wu, J. D., Lu, H., Xu, N. Growth of ZnSe nano-needles by pulsed laser deposition and their application in polymer/inorganic hybrid solar cells. Thin Solid Films 2013; 529: 76-79.
46. Xin, Y., Lin, T., Li, S., Ling, Z., Liu, G., Huang, Z., & Lin, J. Preparation and photoluminescence of single conjugated polymer-TiO2 composite nanofibers. Journal of Luminescence 2012; 132: 738-742.
47. Romero-Ibarra, I. C., Bonilla-Blancas, E., Sánchez-Solís, A., & Manero, O. Influence of the morphology of barium sulfate nanofibers and nanospheres on the physical properties of polyurethane nanocomposites. European Polymer Journal 2012; 48: 670-676.
48. Kowalczyk, K., Łuczka, K., Grzmil, B., & Spychaj, T. Anticorrosive polyurethane paints with nano-and microsized phosphates. Progress in Organic Coatings 2012; 74: 151-157.
49. Bakare, I. O., Okieimen, F. E., Pavithran, C., Abdul Khalil, H. P. S., & Brahmakumar, M. Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites. Materials & Design 2010; 31: 4274-4280.
50. Lavall, R. L., Ferrari, S., Tomasi, C., Marzantowicz, M., Quartarone, E., Fagnoni, M., Mustarelli, P., Saladino, M. L. MCM-41 silica effect on gel polymer electrolytes based on thermoplastic polyurethane. Electrochimica Acta 2012; 60: 359-365.
51. Yadav, S. K., Mahapatra, S. S., & Cho, J. W. Synthesis of mechanically robust antimicrobial nanocomposites by click coupling of hyperbranched polyurethane and carbon nanotubes. Polymer 2012; 53: 2023-2031.
52. Yan, X., & Xu, G. Influence of silane coupling agent on corrosion-resistant property in low infrared emissivity Cu/polyurethane coating. Progress in Organic Coatings 2012; 73: 232-238.
53. Chen, L., Zhai, Y., Ding, H., Zhou, G., Zhu, Y., & Hui, D. Preparation, characterization and thermoelectricity of ATT/TiO2/PANI nano-composites doped with different acids. Composites Part B: Engineering 2013; 45: 111-116.
54. Chilaka, N., & Ghosh, S. Solid-state poly(ethylene glycol)-polyurethane/polymethylmethacrylate/rutile TiO2 nanofiber composite electrolyte-correlation between morphology and conducting properties. Electrochimica Acta 2012; 62: 362-371.
55. Charpentier, P. A., Burgess, K., Wang, L., Chowdhury, R. R., Lotus, A. F., & Moula, G. Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings. Nanotechnology 2012; 23: 425606.
56. Bandarian, M., Shojaei, A., & Rashidi, A. M. Thermal, mechanical and acoustic damping properties of flexible open-cell polyurethane/multi-walled carbon nanotube foams: effect of surface functionality of nanotubes. Polymer International 2011; 60: 475-482.
57. Roy, S., Srivastava, S. K., Pionteck, J., & Mittal, V. Mechanically and thermally enhanced multiwalled carbon nanotube-graphene hybrid filled thermoplastic polyurethane nanocomposites. Macromolecular Materials and Engineering 2015; 300: 346-357.
58. Li, B., Li, S. M., Liu, J. H., & Yu, M. The heat resistance of a polyurethane coating filled with modified nano-CaCO3. Applied Surface Science 2014; 315: 241-246.
59. Pavličević, J., Špírková, M., Bera, O., Jovičić, M., Pilić, B., Baloš, S., & Budinski-Simendić, J. The influence of ZnO nanoparticles on thermal and mechanical behavior of polycarbonate-based polyurethane composites. Composites Part B: Engineering 2014; 60: 673-679.
60. Jia, R.-P., Wang, C. F., Zheng, K., He, X. Y., & Huang, M. S. Preparation, characterization, and properties of CeO2/thermoplastic polyurethane nanocomposites. Journal of Reinforced Plastics and Composites 2015; 34: 1090-1098.
61. Kim, T. K., Kim, B. K., Kim, Y. S., Cho, Y. L., Lee, S. Y., Cho, Y. B., Kim, J. H., Jeong, H. M. The properties of reactive hot melt polyurethane adhesives modified with novel thermoplastic polyurethanes. Journal of applied polymer science 2009; 114: 1169-1175.
62. Orgilés-Calpena, E., Arán-Aís, F., Torró-Palau, A. M., & Orgilés-Barceló, C. Influence of the chain extender nature on adhesives properties of polyurethane dispersions. Journal of Dispersion Science and Technology 2012; 33: 147-154.
63. Liu, B., Nie, J., & He, Y. From rosin to high adhesive polyurethane acrylate: Synthesis and properties. International Journal of Adhesion and Adhesives 2016; 66: 99-103.
64. Liu, X., Cheng, J., & Zhang, J. Preparation of thermal plastic polyurethane-polystyrene block copolymer via UV irradiation polymerization. Journal of Polymer Research 2014; 21: 544.
65. Bai, C. Y., Zhang, X. Y., Dai, J. B., & Li, W. H. A new UV curable waterborne polyurethane: Effect of CC content on the film properties. Progress in Organic Coatings 2006; 55: 291-295.
66. Pan, X., Zeng, Z., Xue, W., & Zhu, W. Hot melt adhesive properties of PA/TPU blends compatibilized by EVA-g-MAH. Journal of adhesion science and Technology 2017; 31: 943-957.
67. Lu, Q.-W., & Macosko, C. W. Comparing the compatibility of various functionalized polypropylenes with thermoplastic polyurethane (TPU). Polymer 2004; 45: 1981-1991.
68. Bajsić, E. G., Šmit, I., & Leskovac, M. Blends of thermoplastic polyurethane and polypropylene. I. Mechanical and phase behavior. Journal of applied polymer science 2007; 104: 3980-3985.
69. Li, W., Liu, J., Hao, C., Jiang, K., Xu, D., & Wang, D. Interaction of thermoplastic polyurethane with polyamide 1212 and its influence on the thermal and mechanical properties of TPU/PA1212 blends. Polymer Engineering & Science 2008; 48: 249-256.
70. Zhang, S. L., Wang, D., Guan, S. W., Jiang, Z. H., Wu, Z. W., & Wang, G. B. Toughening mechanism of PA1010/ester-based TPU blends. Materials Letters 2007 61(1), 267-273.
71. Kawaguchi, K., & Tajima, Y. Interfacial reaction and its influence on phase morphology and impact properties of modified-polyacetal/thermoplastic polyurethane blends. Journal of applied polymer science 2006; 100: 4375-4382.
72. Cheng, Z., & Wang, Q. Morphology control of polyoxy-methylene/thermoplastic polyurethane blends by adjusting their viscosity ratio. Polymer international 2006; 55: 1075-1080.
73. Wang, X., & Luo, X. A polymer network based on thermoplastic polyurethane and ethylene-propylene-diene elastomer via melt blending: morphology, mechanical properties, and rheology. European Polymer Journal 2004; 40: 2391-2399.
74. Arunan, E., Desiraju, G. R., Klein, R.A., Klein R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B., & Nesbitt, D. J. 14. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure and applied chemistry 2011; 83: 1637-1641.
75. Yildirim, E., Yurtsever, M., Yilgör, E., Yilgör, I., & Wilkes, G. L. Temperature-dependent changes in the hydrogen bonded hard segment network and microphase morphology in a model polyurethane: Experimental and simulation studies. Journal of Polymer Science Part B: Polymer Physics 2018; 56: 182-192.
76. Chun, J. H., Cheon, J. M., Jeong, B.Y., Li, W. K. Synthesis and property of polyurethane using poly(oxyalkylene-alt-PPO) glycols. Molecular Crystals and Liquid Crystals 2017; 653: 220-225.
77. Jian, X., Hu, Y., Zhou, W., & Xiao, L. Self-healing polyurethane based on disulfide bond and hydrogen bond. Polymers for Advanced Technologies 2018; 29: 463-469.
78. Li, W., Liu, J., Zhang, X., Zhao, Y., & Wang, D. Synergetic effect of polyamide 1212 and diisocyanate on performance improving of thermoplastic polyurethane via melt compounding. Journal of Applied Polymer Science 2012; 125: 1077-1083.
79. Andrews, R. D., & Hammack, T. J. The molecular mechanism of the γ mechanical loss peak in ethylenic polymers. Journal of Polymer Science Part B: Polymer Letters 1965; 3: 659-662.
80. Harrell, L. L. Segmented polyurethans. properties as a funcation of segment size and distribution. Macromolecules 1969; 2: 607-612.
81. Prisacariu, C., & Scortanu, E. Influence of macrodiol on phase separation and crystallization processes in hard-phase reinforced polyurethane elastomers based on isocyanates of variable conformational mobility. International Journal of Polymer Analysis and Characterization 2010; 15: 277-286.
82. Saralegi, A., Rueda, L., Fernández-d’Arlas, B., Mondragon, I., Eceiza, A., & Corcuera, M. A. Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on morphology and final properties. Polymer International 2013; 62: 106-115.
83. Sung, C. S. P., & Schneider, N. S. Infrared studies of hydrogen bonding in toluene diisocyanate based polyurethanes. Macromolecules 1975; 8: 68-73.
84. Petrović, Z. S., Javni, I., & Divjaković, V. Structure and physical properties of segmented polyurethane elastomers containing chemical crosslinks in the hard segment. Journal of Polymer Science Part B: Polymer Physics 1998; 36: 221-235.
85. Consolati, G., Kansy, J., Pegoraro, M., Quasso, F., & Zanderighi, L. Positron annihilation study of free volume in cross-linked amorphous polyurethanes through the glass transition temperature. Polymer paper 1998; 39: 3491-3498.
86. Jean, Y. C. Positron annihilation spectroscopy for chemical analysis: a novel probe for microstructural analysis of polymers. Microchemical Journal 1990; 42: 72-102.
87. Seymour, R. W., Estes, G. M., & Cooper, S. L. Infrared studies of segmented polyurethan elastomers. I. hydrogen bonding. Macromolecules 1970; 3: 579-583.
88. Rahmawati, R., Nozaki, S., Kojio, K., Takahara, A., Shinohara, N., & Yamasaki, S. Microphase-separated structure and mechanical properties of cycloaliphatic diisocyanate-based thiourethane elastomers. Polymer Journal 2019; 51: 265.
89. Chang, Z., Zhang, M., Hudson, A. G., Orler, E. B., Moore, R. B., Wilkes, G. L., & Turner, S. R. Synthesis and properties of segmented polyurethanes with triptycene units in the hard segment. Polymer 2013; 54: 6910-6917.
90. Wen, T. C., Wu, M. S., & Yang, C. H. Spectroscopic investigations of poly (oxypropylene) glycol-based waterborne polyurethane doped with lithium perchlorate. Macromolecules 1999; 32: 2712-2720.
91. Zia, K. M., Bhatti, I. A., Barikani, M., Zuber, M., & Bhatti, H. N. XRD studies of polyurethane elastomers based on chitin/1,4-butane diol blends. Carbohydrate Polymers 2009; 76: 183-187.
92. Kannan, M., Joseph, K., & Thomas, S. Dynamic mechanical properties of nanoclay filled TPU/PP blends with compatibiliser. Plastics, Rubber and Composites 2015; 44: 245-251.
93. Piril Ertem, S., Yilgor, E., Kosak, C., Wilkes, G. L., Zhang, M., & Yilgor, I. Effect of soft segment molecular weight on tensile properties of poly (propylene oxide) based polyurethaneureas. Polymer 2012; 53: 4614-4622.
94. Frick, A., & Rochman, A. Characterization of TPU-elastomers by thermal analysis (DSC). Polymer testing 2004; 23: 413-417.
95. Yin, S., Xia, Y., Jia, Q., Hou, Z.-S., & Zhang, N. Preparation and properties of biomedical segmented polyurethanes based on poly (ether ester) and uniform-size diurethane diisocyanates. Journal of Biomaterials science, Polymer edition 2017; 28: 119-138.
96. Jaisankar, S. N., & Radhakrishnan, G. Effect of compatibilizer on morphology and mechanical properties of TPU/SAN blends. Polymer Engineering & Science 2000; 40: 621-626.
97. Ghobashy, M. M., & Abdeen, Z. I. Radiation crosslinking of polyurethanes: characterization by FTIR, TGA, SEM, XRD, and raman spectroscopy. Journal of Polymers 2016; 2016: 1-9.
98. Barick, A. K., & Tripathy, D. K. Effect of nanofiber on material properties of vapor-grown carbon nanofiber reinforced thermoplastic polyurethane (TPU/CNF) nanocomposites prepared by melt compounding. Composites Part A: Applied Science and Manufacturing 2010; 41: 1471-1482.
99. Zou, H., Ran, Q., Wu, S., & Shen, J. Study of nanocomposites prepared by melt blending TPU and montmorillonite. Polymer Composites 2008; 29: 385-389.
100. Grandy, D. B., Hourston, D. J., Price, D. M., Reading, M., Silva, G. G., Song, M., & Sykes, P. A. Microthermal characterization of segmented polyurethane elastomers and a polystyrene-poly (methyl methacrylate) polymer blend using variable-temperature pulsed force mode atomic force microscopy. Macromolecules 2000; 33: 9348-9359.
101. Kim, Y. S., Lee, J. S., Ji, Q., & McGrath, J. E. Surface properties of fluorinated oxetane polyol modified polyurethane block copolymers. Polymer 2002; 43: 7161-7170.
102. Yen, H. T. Thermoplastic polyurethane hot melt adhesive synthesized by using 2-hea as terminal agent for seamless bonding of nylon fiber fabric 2018; National Taiwan University of Science and Technology,Taipei.
103. Heinzmann, C., Lamparth, I., Rist, K., Moszner, N., Fiore, G. L., & Weder, C. Supramolecular polymer networks made by solvent-free copolymerization of a liquid 2-ureido-4 [1H]-pyrimidinone methacrylamide. Macromolecules 2015; 48: 8128-8136.
104. Cao, K., & Liu, G. Low-molecular-weight, high-mechanical-strength, and solution-processable telechelic poly(ether imide) end-capped with ureidopyrimidinone. Macromolecules 2017; 50: 2016-2023.
105. Chung, Y.-C., Lee, B. H., Choi, J. W., & Chun, B. C. The lateral cross-linking of polyurethane using grafted epichlorohydrin and the impact on the tensile and thermal properties. Advances in Polymer Technology 2018; 37: 323-331.
106. Abdiyev, K. Z., Toktarbay, Z., Zhenissova, A. Z., Zhursumbaeva, M. B., Kainazarova, R. N., & Nuraje, N. The new effective flocculants-copolymers of N, N-dimethyl-N, N-diallyl-ammonium chloride and N, N-dimethylacrylamide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015; 480: 228-235.
107. Tamate, R., Hashimoto, K., Horii, T., Hirasawa, M., Li, X., Shibayama, M., & Watanabe, M. Self-healing micellar ion gels based on multiple hydrogen bonding. Advanced Materials 2018; 30: 1802792.
108. Kang, K. S., Jee, C., Bae, J.-H., Jung, H. J., Kim, B. J., & Huh, P. Effect of soft/hard segments in poly(tetramethylene glycol)-polyurethane for water barrier film. Progress in Organic Coatings 2018; 123: 238-241.
109. Nozaki, S., Hirai, T., Higaki, Y., Yoshinaga, K., Kojio, K., & Takahara, A. Effect of chain architecture of polyol with secondary hydroxyl group on aggregation structure and mechanical properties of polyurethane elastomer. Polymer 2017; 116: 423-428.
110. Weng, N. C., Wu, C. F., Tsen, W.-C., Wu, C. L., & Suen, M. C. Synthesis and properties of shape memory polyurethanes generated from schiff-base chain extender containing benzoyl and pyridyl rings. Designed monomers and polymers 2018; 21: 55-63.
111. Kim, H. N., Lee, D. W., Ryu, H., Song, G. S., & Lee, D.-S. Preparation and characterization of isosorbide-based self-healable polyurethane elastomers with thermally reversible bonds. Molecules 2019; 24: 1061.
112. Fenouillot, F., Rousseau, A., Colomines, G., Saint-Loup, R., & Pascault, J. P. Polymers from renewable 1,4:3,6-dianhydr-OHexitols (isosorbide, isomannide and isoidide): A review. Progress in Polymer Science 2010; 35: 578-622.
113. Akın, A., & Işıklan, N. Microwave assisted synthesis and characterization of sodium alginate-graft-poly (N, N’-dimethylacrylamide). International journal of biological macromolecules 2016; 82: 530-540.
114. Tripathy, J., Mishra, D. K., Yadav, M., & Behari, K. Synthesis, characterization and applications of graft copolymer (Chitosan-g-N,N-dimethylacrylamide). Carbohydrate Polymers 2010; 79: 40-46.
115. Fang, C., Jing, Y., Zong, Y., & Lin, Z. Effect of N, N-dimethylacrylamide (DMA) on the comprehensive properties of acrylic latex pressure sensitive adhesives. International Journal of Adhesion and Adhesives 2016: 71: 105-111.
116. Tobing, S., Klein, A., Sperling, L. H., & Petrasko, B. Effect of network morphology on adhesive performance in emulsion blends of acrylic pressure sensitive adhesives. Journal of applied polymer science 2001; 81: 2109-2117.
117. Saiani, A., Daunch, W. A., Verbeke, H., Leenslag, J. W., & Higgins, J. S. Origin of multiple melting endotherms in a high hard block content polyurethane. 1. Thermodynamic investigation. Macromolecules 2001; 34: 9059-9068.
118. Zhou, R. J., & Burkhart, T. Thermal and mechanical properties of poly (ether ester)-based thermoplastic elastomer composites filled with TiO2 nanoparticles. Journal of materials science 2011 46(7), 2281-2287.
119. Kuo, C. F. J., Chen, J. B., Lin, P. H., & Yen, H.T. Hot-melt pressure-sensitive adhesive for seamless bonding of nylon fabric part I: effect of a functional monomer. Textile Research Journal 2019; 89: 926-935.
120. Sáenz-Pérez, M., Lizundia, E., Laza, J. M., García-Barrasa, J., Vilas, J. L., & León, L. M. Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: thermal, shape-memory and mechanical behavior. RSC Advances 2016; 6: 69094-69102.
121. Zen, A., Saphiannikova, M., Neher, D., Grenzer, J., Grigorian, S., Pietsch, U., Asawapirom, U., Janietz S., Scherf, U., Lieberwirth, Ingo., & Wegner, G. Effect of molecular weight on the structure and crystallinity of poly(3-hexylthiophene). Macromolecules 2006; 39: 2162-2171.
122. Wang, W., Chen, H., Dai, Q., Zhao, D., Zhou, Y., Wang, L., & Zeng, D. Thermally healable PTMG-based polyurethane elastomer with robust mechanical properties and high healing efficiency. Smart Materials and Structures 2018; 28: 015008.
123. Nguyen Dang, L., Le Hoang, S., Malin, M., Weisser, J., Walter, T., Schnabelrauch, M., & Seppälä, J. Synthesis and characterization of castor oil-segmented thermoplastic polyurethane with controlled mechanical properties. European Polymer Journal 2016; 81: 129-137.
124. Jing, X., Mi, H. Y., Huang, H. X., & Turng, L. S. Shape memory thermoplastic polyurethane (TPU)/poly (ε-caprolactone)(PCL) blends as self-knotting sutures. Journal of the mechanical behavior of biomedical materials 2016; 64: 94-103.
125. Leigh, D. A., Robertson, C. C., Slawin, A. M. Z., & Thomson, P. I. T. AAAA-DDDD quadruple hydrogen-bond arrays featuring NH··· N and CH··· N hydrogen bonds. Journal of the American Chemical Society 2013; 135: 9939-9943.
126. Puszka, A. Thermal and mechanical behavior of new transparent thermoplastic polyurethane elastomers derived from cycloaliphatic diisocyanate. Polymers 2018; 10: 537.
127. Beniah, G., Chen, X., Uno, B. E., Liu, K., Leitsch, E. K., Jeon, J., Heath, W. H., Scheidt, K. A., Torkelson, J. M. Combined effects of carbonate and soft-segment molecular structures on the nanophase separation and properties of segmented polyhydroxyurethane. Macromolecules 2017; 50: 3193-3203.

無法下載圖示 全文公開日期 2024/08/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE