簡易檢索 / 詳目顯示

研究生: 戴駿義
Jun-Yi Dai
論文名稱: 以不同加工方式製備添加奈米矽顆粒之熱塑性聚氨酯的發泡影響
Effects of different processing methods for foaming thermoplastic polyurethanes with nanosilica particles
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 林子仁
王鎮杰
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 85
中文關鍵詞: 熱塑性聚氨酯奈米矽顆粒雙螺桿押出機批次發泡
外文關鍵詞: Thermoplastic polyurethane, Nanosilica particles, Twin-screw extruder, Batch foaming
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本實驗將經表面處理與未經表面處理的兩種奈米矽顆粒,與AL和AU這兩種不同公司製造的醚類TPU以雙螺桿押出機摻混,比較奈米矽顆粒是否有表面處理對發泡結果差異。因為奈米矽顆粒的密度較低,而將樣品混入0.5 wt%礦油讓奈米矽顆粒沾附於TPU顆粒上,並以桶式攪拌機預先攪拌以促進分散。為了瞭解礦油對TPU發泡的影響,因此也製備了僅添加礦油的TPU混煉並進行發泡,以作為對照組。
      根據實驗結果顯示,添加奈米矽顆粒於AL的TPU中,在泡孔結構改善上並沒有幫助;對於AU的TPU,奈米矽顆粒則能起到作用,能降低泡孔尺寸並提高泡孔密度,而進行表面處理的奈米矽顆粒的泡材能比未進行表面處理的奈米矽顆粒的泡材有更高的膨脹倍率。原本我們認為添加礦油應該不會影響TPU的性質,然而就實驗結果顯示,添加0.5 wt%礦油對於AL的TPU最大膨脹倍率有明顯的影響。


    In this study, two types of ether TPUs made by two different companies, AL and AU, were compounded by a twin-screw extruder with two types of nanosilica particles, surface-treated and without surface-treated,and compared the difference in foaming results between the surface-treated and without surface-treated nanosilica particles. Because the density of the nanosilica particles is extremely low, the samples were mixed with 0.5 wt% mineral oil to allow the nanosilica particles to adhere to the TPU particles, and then pre-blended with a barrel mixer to promote dispersion. In order to understand the effect of mineral oil on the foaming of TPU, TPU with only mineral oil added was also prepared for compounding and foaming, which was used as a control group.
    According to the experimental results, the addition of nanosilica particles to the AL TPU did not help to improve the cell structure, while the nanosilica particles of the AU TPU could decrease the cell size and increase the cell density, and the foams with surface-treated nanosilica particles could have a higher expansion ratio than the foams with without surface-treated nanosilica particles. Originally, we thought that the addition of mineral oil should not affect the properties of TPU, however, the experimental results showed that the addition of 0.5 wt% mineral oil has a significant effect on the maximum expansion ratio of AL TPU.

    摘要 I 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 第二章 文獻回顧 3 2.1 熱塑性聚氨酯 3 2.1.1 熱塑性聚氨酯組成 3 2.1.2 TPU微相分離 7 2.2 高分子發泡材料 12 2.2.1 發泡劑 14 2.2.2 發泡機制 16 2.2.3 批次發泡 23 2.2.4 泡珠材料 25 2.3 添加劑 29 2.3.1 成核劑 29 2.3.2 奈米矽顆粒Si-NPs 30 2.4 加工方式 30 第三章 實驗方法 33 3.1 實驗材料 33 3.2 實驗儀器 34 3.3 實驗步驟 36 3.3.1 實驗流程圖 36 3.3.2 混煉 37 3.3.3 熱示差掃描量熱儀(DSC) 38 3.3.4 一步法批次發泡 39 3.3.5 測量泡材之密度、膨脹倍率、收縮率 40 3.3.6 掃描式電子顯微鏡(SEM) 41 3.3.7 計算泡孔尺寸 41 3.3.8 計算泡孔密度 42 第四章 結果與討論 43 4.1 DSC熱分析 43 4.1.1 TPU純料與添加礦油於TPU的DSC分析 43 4.1.2 添加不同奈米矽顆粒於TPU的DSC分析 44 4.2 不同加工方式對泡孔結構的影響 45 4.2.1 以不同加工方式製備TPU原料的泡孔結構比較 46 4.2.2 以不同加工方式製備添加不同奈米矽顆粒於TPU的泡孔結構比較 50 第五章 結論 53 參考文獻 54 附錄 67 附錄A TPU顆粒樣品外觀照片 67 附錄B 硬度為90A的TPU物理性質 68 附錄C 硬度為90A之TPU純料與添加礦油的DSC分析 69 附錄D 以不同加工方式製備硬度為90A之TPU的泡孔結構比較 70 附錄E 不同加工方式對泡材收縮的影響 73 E.1 以不同加工方式製備TPU原料的泡材收縮比較 73 E.2 以不同加工方式製備添加不同奈米矽顆粒於TPU的泡材收縮比較 74

    1. Polymer Foam Global Market Report 2023. https://www.reportlinker.com/p06456781/Polymer-Foam-Global-Market-Report.html. Accessed date: June 26 2023
    2. F. Prissok, and F. Braun, Foams based on thermoplastic polyurethanes, US11053368B2.
    3. J.O. Akindoyo, M.D.H. Beg, S. Ghazali, M.R. Islam, N. Jeyaratnam, and A. R. Yuvarajc, Polyurethane types, synthesis and applications–a review. RSC Advances, 2016. 6(115): p. 114453-114482.
    4. N.J. Hossieny, M.R. Barzegari, M. Nofar, S.H. Mahmood, and C.B. Park, Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams. Polymer, 2014. 55(2): p. 651-662.
    5. S. Wang, and J. Zhang, Effect of nucleating agent on the crystallization behavior, crystal form and solar reflectance of polypropylene. Solar Energy Materials and Solar Cells, 2013. 117: p. 577-584.
    6. H. Janani, and M. Famili, Investigation of a strategy for well controlled inducement of microcellular and nanocellular morphologies in polymers. Polymer Engineering and Science, 2010. 50(8): p. 1558-1570.
    7. S.K. Yeh, R. Rangappa, T.H. Hsu, and S. Utomo, Effect of extrusion on the foaming behavior of thermoplastic polyurethane with different hard segments. Journal of Polymer Research, 2021. 28(7): p. 244.
    8. F.M. de Souza, M.R. Sulaiman, and R.K. Gupta, Materials and Chemistry of Polyurethanes, in Materials and Chemistry of Flame-Retardant Polyurethanes Volume 1: A Fundamental Approach, edited by R.K. Gupta. American Chemical Society, 2021. p. 1-36.
    9. E. Kontou, G. Spathis, M. Niaounakis, and V. Kefalas, Physical and chemical cross-linking effects in polyurethane elastomers. Colloid and Polymer Science, 1990. 268(7): p. 636-644.
    10. J. Bernardini, D. Licursi, I. Anguillesi, P. Cinelli, M.B. Coltelli, C. Antonetti, A.M.R. Galletti, and A. Lazzeri, Exploitation of Arundo donax L. hydrolysis residue for the green synthesis of flexible polyurethane foams. BioResources, 2017. 12(2): p. 3630-3655.
    11. M. Khalifa, S. Anandhan, G. Wuzella, H. Lammer, and A.R. Mahendran, Thermoplastic polyurethane composites reinforced with renewable and sustainable fillers–a review. Polymer-Plastics Technology and Materials, 2020. 59(16): p. 1751-1769.
    12. B. Mailhot, K. Komvopoulos, B. Ward, Y. Tian, and G. A. Somorjai, Mechanical and friction properties of thermoplastic polyurethanes determined by scanning force microscopy. Journal of Applied Physics, 2001. 89(10): p. 5712-5719.
    13. L. Jiang, Z. Ren, W. Zhao, W. Liu, H. Liu, and C Zhu, Synthesis and structure/properties characterizations of four polyurethane model hard segments. Royal Society Open Science, 2018. 5(7): p. 180536.
    14. E. Maréchal, Chapter 1 Creation and Development of Thermoplastic Elastomers, and Their Position among Organic Materials, in Handbook of Condensation Thermoplastic Elastomers, edited by S. Fakirov. John Wiley and Sons, 2005. p.1-31.
    15. A. Frick, and A. Rochman, Characterization of TPU-elastomers by thermal analysis (DSC). Polymer Testing, 2004. 23(4): p. 413-417.
    16. R.G. Arnold, J.A. Nelson, and J.J. Verbanc, Recent advances in isocyanate chemistry. Chemical Reviews, 1957. 57(1): p. 47-76.
    17. I. Javni, W. Zhang, and Z.S. Petrović, Effect of different isocyanates on the properties of soy‐based polyurethanes. Journal of Applied Polymer Science, 2003. 88(13): p. 2912-2916.
    18. F.M. de Souza, P.K. Kahol, and R.K. Gupta, Introduction to polyurethane chemistry, in Polyurethane Chemistry: Renewable Polyols and Isocyanates, edited by R.K. Gupta, and P.K. Kahol. American Chemical Society, 2021. p. 1-24.
    19. D.K. Lee, and H.B. Tsai, Properties of segmented polyurethanes derived from different diisocyanates. Journal of Applied Polymer Science, 2000. 75(1): p. 167-174.
    20. K.C. Hung, C.S. Tseng, and S.H. Hsu, Chapter 5 3D printing of polyurethane biomaterials, in Advances in Polyurethane Biomaterials, edited by S.L. Cooper, and J. Guan. Woodhead Publishing, 2016. p. 149-170.
    21. C. Prisacariu, Chemistry of polyurethane elastomers, in Polyurethane Elastomers: from Morphology to Mechanical Aspects, edited by C. Prisacariu. Springer Science and Business Media, 2011. p. 1-22.
    22. T. Pivec, M.S. Smole, P. Gašparič, and K.S. Kleinschek, Polyurethanes for Medical Use. Tekstilec, 2017. 60(3): p. 182-197.
    23. M. Pourmohammadi-Mahunaki, V. Haddadi-Asl, H. Roghani-Mamaqani, M. Koosha, and M. Yazdi, Effect of chain extender length and molecular architecture on phase separation and rheological properties of ether-based polyurethanes. Polymer Bulletin, 2021. 79(2022): p. 8653-8668.
    24. A.D. Padsalgikar, Chapter 3 Speciality plastics in cardiovascular applications, in Plastics in Medical Devices for Cardiovascular Applications, edited by A.D. Padsalgikar. William Andrew, 2017. p. 53-82.
    25. T. Li, B. Zhang, S. Jiang, X. Zhou, G. Du, Z. Wu, M. Cao, and L. Yang, Novel highly branched polymer wood adhesive resin. ACS Sustainable Chemistry and Engineering, 2020. 8(13): p. 5209-5216.
    26. T. Gui, T. Xia, H. Wei, Z. Zhang, and X. Ouyang, Investigation on Effects of Chain Extenders and Cross-linking Agents of Polyurethane Elastomers Using Independent Building Vibration Isolation Sensor. Sensors and Materials, 2019. 31(2019): p. 4069-4078.
    27. B.X. Cheng, W.C. Gao, X.M. Ren, X.Y. Ouyang, Y. Zhao, H. Zhao, W. Wu, C.X. Huang, Y. Liu, X.Y. Liu, H.N. Li, and R.K.Y. Li, A review of microphase separation of polyurethane: Characterization and applications. Polymer Testing, 2022: p. 107489.
    28. T.J. Touchet, and E.M. Cosgriff-Hernandez, Chpater 1 Hierarchal structure–property relationships of segmented polyurethanes, in Advances in Polyurethane Biomaterials, edited by S.L. Cooper, and J. Guan. Woodhead Publishing, 2016. p. 3-22.
    29. J.H. Hwang, S.H. Kim, W. Cho, W. Lee, S. Park, Y.S. Kim, J.C. Lee, K.J. Lee, J.J. Wie, and D.G. Kim, A Microphase Separation Strategy for the Infrared Transparency‐Thermomechanical Property Conundrum in Sulfur‐Rich Copolymers. Advanced Optical Materials, 2023. 11(5): p. 2202432.
    30. X. Li, H. Wang, B. Xiong, E. Pöselt, B. Eling, and Y. Men, Destruction and reorganization of physically cross-linked network of thermoplastic polyurethane depending on its glass transition temperature. ACS Applied Polymer Materials, 2019. 1(11): p. 3074-3083.
    31. M.O. Sinnokrot, E.F. Valeev, and C.D. Sherrill, Estimates of the ab initio limit for π− π interactions: The benzene dimer. Journal of the American Chemical Society, 2002. 124(36): p. 10887-10893.
    32. I. Javni, O. Bilić, N. Bilić, Z.S. Petrović, E.A Eastwood, F. Zhang, and J. Ilavský, Thermoplastic polyurethanes with controlled morphology based on methylenediphenyldiisocyanate/isosorbide/butanediol hard segments. Polymer International, 2015. 64(11): p. 1607-1616.
    33. L.M. Leung, and J.T. Koberstein, DSC annealing study of microphase separation and multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules, 1986. 19(3): p. 706-713.
    34. J.T. Koberstein, A.F. Galambos, and L.M. Leung, Compression-molded polyurethane block copolymers. 1. Microdomain morphology and thermomechanical properties. Macromolecules, 1992. 25(23): p. 6195-6204.
    35. M.T. Takemori, Towards an understanding of the heat distortion temperature of thermoplastics. Polymer Engineering and Science, 1979. 19(15): p. 1104-1109.
    36. A. Eceiza, M.D. Martin, K. de la Caba, G. Kortaberria, N. Gabilondo, M.A. Corcuera, and I. Mondragon, Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties. Polymer Engineering and Science, 2008. 48(2): p. 297-306.
    37. E. Yılgör, İ. Yılgör, and E. Yurtsever, Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds. Polymer, 2002. 43(24): p. 6551-6559.
    38. B. Pukánszky Jr, K. Bagdi, Z. Tóvölgyi, J. Varga, L. Botz, S. Hudak, T. Dóczi, and B. Pukánszky, Effect of interactions, molecular and phase structure on the properties of polyurethane elastomers, in Colloids for Nano-and Biotechnology, edited by Z.D. Hórvölgyi, and É. Kiss. Springer, 2008. p. 218-224.
    39. I. Yilgor, E. Yilgor, I.G. Guler, T.C. Ward, and G.L. Wilkes, FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer, 2006. 47(11): p. 4105-4114.
    40. Y.I. Tien and K.H. Wei, Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer, 2001. 42(7): p. 3213-3221.
    41. M.V. Mokeev, S.A. Ostanin, N.N. Saprykina, and V.V. Zuev, Microphase structure of polyurethane-polyurea copolymers as revealed by solid-state NMR: Effect of molecular architecture. Polymer, 2018. 150: p. 72-83.
    42. M.M. Mirhosseini, V. Haddadi-Asl, and I.S. Jouibari, A simple and versatile method to tailor physicochemical properties of thermoplastic polyurethane elastomers by using novel mixed soft segments. Materials Research Express, 2019. 6(6): p. 065314.
    43. V.A. Vilensky, and Y.S. Lipatov, A criterion for microphase separation in segmented polyurethane and polyurethane ureas. Polymer, 1994. 35(14): p. 3069-3074.
    44. J.T. Koberstein, and R.S. Stein, Small‐angle X‐ray scattering studies of microdomain structure in segmented polyurethane elastomers. Journal of Polymer Science: Polymer Physics Edition, 1983. 21(8): p. 1439-1472.
    45. F.L. Jin, M. Zhao, M. Park, and S.J. Park, Recent trends of foaming in polymer processing: A review. Polymers, 2019. 11(6): p. 953.
    46. P. Liu, and G.F. Chen, Applications of Polymer Foams, in Porous Materials: Processing and Applications, edited by P. Liu, and G.F. Chen. Elsevier, 2014. p. 383-410.
    47. K.W. Suh, C.P. Park, M.J. Maurer, M.H. Tusim, R.D. Genova, R. Broos, and D.P. Sophiea, Lightweight cellular plastics. Advanced Materials, 2000. 12(23): p. 1779-1789.
    48. K.C. Khemani, Chapter 1 Polymeric foams: an overview, in Polymeric Foams: Science and Technology, edited by K.C. Khemani. American Chemical Society, 1997. p. 1-7.
    49. A. Kemona, and M. Piotrowska, Polyurethane recycling and disposal: Methods and prospects. Polymers, 2020. 12(8): p. 1752.
    50. I. Consultants, The 12th Edition of Report on the Markets for Polyurethane Chemicals and Products in Europe, Middle East and Africa. IAL Consultants: Ealing, UK, 2018.
    51. M. Nofar, and C.B. Park, Chapter 1 Introduction to Plastic Foams and Their Foaming, in Polylactide Foams: Fundamentals, Manufacturing, and Applications, edited by M. Nofar, and C.B. Park. William Andrew, 2018. p. 1-16.
    52. J.G. Drobny, Chapter 4 Processing methods applicable to thermoplastic elastomers, in Handbook of Thermoplastic Elastomers 2nd Edition, edited by J.G. Drobny. Elsevier, 2014. p. 33-173.
    53. P.C. Lee, J. Wang, and C.B. Park, Extruded Open-Cell Foams Using Two Semicrystalline Polymers with Different Crystallization Temperatures. Industrial and Engineering Chemistry Research, 2006. 45(1): p. 175-181.
    54. S. Alsoy, Modeling of diffusion in closed cell polymeric foams. Journal of cellular plastics, 1999. 35(3): p. 247-271.
    55. W. Zhai, J. Jiang, and C.B. Park, A review on physical foaming of thermoplastic and vulcanized elastomers. Polymer Reviews, 2022. 62(1): p. 95-141.
    56. Montreal protocol on substances that deplete the ozone layer. Washington, DC: US Government Printing Office, 1987. 26: p. 128-136.
    57. S.M. Hitchen, and J.R. Dean, Properties of supercritical fluids, in Applications of Supercritical Fluids in Industrial Analysis, edited by J.R. Dean. Springer Dordrecht, 1993. p. 1-11.
    58. M. Sauceau, J. Fages, A. Common, C. Nikitine, and E. Rodier, New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Progress in Polymer Science, 2011. 36(6): p. 749-766.
    59. R. Li, J.H. Lee, C. Wang, L.H. Mark, and C.B. Park, Solubility and diffusivity of CO2 and N2 in TPU and their effects on cell nucleation in batch foaming. The Journal of Supercritical Fluids, 2019. 154: p. 104623.
    60. Z. Xu, G. Wang, J. Zhao, A. Zhang, G. Dong, and G. Zhao, Anti-shrinkage, high-elastic, and strong thermoplastic polyester elastomer foams fabricated by microcellular foaming with CO2 & N2 as blowing agents. Journal of CO2 Utilization, 2022. 62: p. 102076.
    61. A. Witkowski, M. Majkut, and S. Rulik, Analysis of pipeline transportation systems for carbon dioxide sequestration. Archives of Thermodynamics, 2014. 35(1): p. 117-140.
    62. L. Qin, X. Zhang, C. Zhai, H. Lin, S. Lin, P. Wang, and S. Li, Advances in liquid nitrogen fracturing for unconventional oil and gas development: a review. Energy and Fuels, 2022. 36(6): p. 2971-2992.
    63. L.J.M. Jacobs, M.F. Kemmere, and J.T.F. Keurentjes, Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications. Green Chemistry, 2008. 10(7): p. 731-738.
    64. C. Okolieocha, D. Raps, K. Subramaniam, and V. Altstädt, Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions–A review. European Polymer Journal, 2015. 73: p. 500-519.
    65. J.S. Colton, N.P. Suh, The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polymer Engineering and Science, 1987. 27(7): p. 485-492.
    66. A. Taqieddin, M.R. Allshouse, and A.N. Alshawabkeh, Critical Review—Mathematical formulations of electrochemically gas-evolving systems. Journal of The Electrochemical Society, 2018. 165(13): p. E694.
    67. S.N. Leung, Mechanisms of cell nucleation, growth, and coarsening in plastic foaming: theory, simulation, and experiment. PhD dissertation, Mechanical and Industrial Engineering, University of Toronto, 2009.
    68. S.N. Leung, C.B. Park, and H. Li, Numerical simulation of polymeric foaming processes using modified nucleation theory. Plastics, Rubber and Composites, 2006. 35(3): p. 93-100.
    69. M. Nofar, E.B. Küçük, and B. Batı, Effect of hard segment content on the microcellular foaming behavior of TPU using supercritical CO2. The Journal of Supercritical Fluids, 2019. 153: p. 104590.
    70. A. Pattanayak, and S.C. Jana, Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer, 2005. 46(14): p. 5183-5193.
    71. S. Ito, K. Matsunaga, M. Tajima, and Y. Yoshida, Generation of microcellular polyurethane with supercritical carbon dioxide. Journal of Applied Polymer science, 2007. 106(6): p. 3581-3586.
    72. S. Sankarpandi, C.B. Park, and A.K. Ghosh, CO2‐induced crystal engineering of polylactide and the development of a polymeric nacreous microstructure. Polymer International, 2017. 66(11): p. 1587-1597.
    73. S. Sankarpandi, C.B. Park, and A.K. Ghosh, CO2‐induced crystallization of polylactide and its self‐templating ‘stack of coins’ crystalline microstructure. Polymer Engineering and Science, 2017. 57(4): p. 365-373.
    74. T.A. Lin, J.H. Lin, and L. Bao, Polypropylene/thermoplastic polyurethane blends: Mechanical characterizations, recyclability and sustainable development of thermoplastic materials. Journal of Materials Research and Technology, 2020. 9(3): p. 5304-5312.
    75. H. Fang, L. Zhang, A. Chen, and F. Wu, Improvement of mechanical property for PLA/TPU blend by adding PLA-TPU copolymers prepared via in situ ring-opening polymerization. Polymers, 2022. 14(8): p. 1530.
    76. W. Wang, X. Liao, Y. He, J. Li, Q. Jiang, and G. Li, Thermoplastic polyurethane/polytetrafluoroethylene composite foams with enhanced mechanical properties and anti-shrinkage capability fabricated with supercritical carbon dioxide. The Journal of Supercritical Fluids, 2020. 163: p. 104861.
    77. J.A. Gallagher, Flexible polyurethane foams with reduced tendency for shrinkage, US5208271A.
    78. S. Ju, A. Lee, Y. Shin, H. Jang, J.W. Yi, Y. Oh, N.J. Jo, and T. Park, Preventing the Collapse Behavior of Polyurethane Foams with the Addition of Cellulose Nanofiber. Polymers, 2023. 15(6): p. 1499.
    79. Y. Guo, N. Hossieny, R.K.M. Chu, C.B. Park, and N. Zhou, Critical processing parameters for foamed bead manufacturing in a lab-scale autoclave system. Chemical Engineering Journal, 2013. 214: p. 180-188.
    80. D. Raps, N. Hossieny, C.B. Park, and V. Altstädt, Past and present developments in polymer bead foams and bead foaming technology. Polymer, 2015. 56: p. 5-19.
    81. E. K. Lee, Novel Manufacturing processes for polymer bead foams. PhD dissertation, Department of Mechanical and Industrial Engineering, University of Toronto, 2010.
    82. M. Nofar, Y. Guo, and C.B. Park, Double crystal melting peak generation for expanded polypropylene bead foam manufacturing. Industrial and Engineering Chemistry Research, 2013. 52(6): p. 2297-2303.
    83. J. Kuhnigk, T. Standau, D. Dörr, C. Brütting, V. Altstädt, and H. Ruckdäschel, Progress in the development of bead foams–A review. Journal of Cellular Plastics, 2022. 58(4): p. 707-735.
    84. N.H.R. Sulong, S.A.S. Mustapa, and M.K.A. Rashid, Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, 2019. 136(20): p. 47529.
    85. M.R. Barzegari, N. Hossieny, D. Jahani, and C.B. Park, Characterization of hard-segment crystalline phase of poly (ether-block-amide)(PEBAX®) thermoplastic elastomers in the presence of supercritical CO2 and its impact on foams. Polymer, 2017. 114: p. 15-27.
    86. D. Libster, A. Aserin, and N. Garti, Advanced nucleating agents for polypropylene. Polymers for advanced technologies, 2007. 18(9): p. 685-695.
    87. R.H. Hansen, and W.M. Martin, Novel methods for the production of foamed polymers. Nucleation of dissolved gas by localized hot spots. Industrial and Engineering Chemistry Product Research and Development, 1964. 3(2): p. 137-141.
    88. R.H. Hansen, and W.M. Martin, Novel methods for the production of foamed polymers ii. nucleation of dissolved gas by finely‐divided metals. Journal of Polymer Science Part B: Polymer Letters, 1965. 3(4): p. 325-330.
    89. S.N. Leung, A. Wong, L.C. Wang, and C.B. Park, Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. Journal of Supercritical Fluids, 2012. 63: p. 187-198.
    90. A. Wong, S.F.L. Wijnands, T. Kuboki, and C.B. Park, Mechanisms of nanoclay-enhanced plastic foaming processes: Effects of nanoclay intercalation and exfoliation. Journal of Nanoparticle Research, 2013. 15: p. 1-15.
    91. Y. Yang, M.C. Gupta, K.L. Dudley, and R.W. Lawrence, Conductive carbon nanofiber–polymer foam structures. Advanced Materials, 2005. 17(16): p. 1999-2003.
    92. P.P. Abhilash, D.K. Nayak, B. Sangoju, R. Kumar, and V. Kumar, Effect of nano-silica in concrete; a review. Construction and Building Materials, 2021. 278: p. 122347.
    93. Y. Chen, S. Zhou, H. Yang, and L. Wu, Structure and properties of polyurethane/nanosilica composites. Journal of Applied Polymer Science, 2005. 95(5): p. 1032-1039.
    94. Y. Sun, Z. Zhang, and C. Wong, Study on mono-dispersed nano-size silica by surface modification for underfill applications. Journal of Colloid and Interface Science, 2005. 292(2): p. 436-444.
    95. T. Kang, I. Jang, and S.G. Oh, Surface modification of silica nanoparticles using phenyl trimethoxy silane and their dispersion stability in N-methyl-2-pyrrolidone. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016. 501: p. 24-31.
    96. J. Yang, L. Huang, Y. Zhang, F. Chen, and M. Zhong, Mesoporous silica particles grafted with polystyrene brushes as a nucleation agent for polystyrene supercritical carbon dioxide foaming. Journal of Applied Polymer Science, 2013. 130(6): p. 4308-4317.
    97. G. Hu, and F. Feng, Effect of nanoparticles orientation on morphology of polymeric nanocomposite foams: preparation of foamed nanocomposite fibers by supercritical carbon dioxide. Polymer-Plastics Technology and Materials, 2020. 59(13): p. 1407-1416.
    98. I.K. Hong, S. Lee, Microcellular foaming of silicone rubber with supercritical carbon dioxide. Korean Journal of Chemical Engineering, 2014. 31: p. 166-171.
    99. Q. Qi, P. Zheng, Y. Lei, and X. Liu, Design of bi-modal pore structure polyarylene ether nitrile/SiO2 foams with ultralow-k dielectric and wave transparent properties by supercritical carbon dioxide. Composites Part B: Engineering, 2019. 173: p. 106915.
    100. G. Rizvi, L.M. Matuana, and C.B. Park, Foaming of PS/wood fiber composites using moisture as a blowing agent. Polymer Engineering and Science, 2000. 40(10): p. 2124-2132.
    101. I.M. Kalogeras, Glass‐Transition Phenomena in Polymer Blends, in Encyclopedia of Polymer Blends, Volume 3: Structure, edited by A.I. Isayev. John Wiley and Sons, 2016. p. 1-134.
    102. V. Kumar, and N.P. Suh, A process for making microcellular thermoplastic parts. Polymer Engineering and Science, 1990. 30(20): p. 1323-1329.
    103. 李佳芸, 添加不同表面處理的奈米矽顆粒對於熱塑性聚氨酯的發泡影響. 碩士論文, 材料科學與工程研究所, 國立臺灣科技大學. 2022.
    104. A. Azhar, Assessment of fumed silica as a nucleating agent for sc-CO2 physical foaming of TPUs. 碩士論文, 材料科學與工程研究所, 國立臺灣科技大學. 2023.

    無法下載圖示 全文公開日期 2028/08/19 (校內網路)
    全文公開日期 2028/08/19 (校外網路)
    全文公開日期 2028/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE