簡易檢索 / 詳目顯示

研究生: 王祺均
Chi-Chun Wang
論文名稱: 運動鞋考量不同地板條件與步態時期下防滑性能之計算力學研究
A Computational Study on Traction Performance of Athletic Footwear Under Different Floor Conditions During the Gait
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 許維君
Wei-Chun Hsu
林鼎勝
Ting-Sheng Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 77
中文關鍵詞: 防滑性能運動鞋類有限元分析足底壓力鞋大底紋路
外文關鍵詞: Traction, Footwear, Finite element analysis, Plantar pressure, Outsole tread pattern
相關次數: 點閱:213下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用電腦數值分析技術評估運動鞋之力學特性,此項分析
    技術可替代實際開發樣品的測試工作,其優點包括:降低材料開發成
    本、減少人力成本、減少依據經驗判斷之誤差。本研究透過電腦雕刻
    技術建置鞋子之有限元素模型,對於受測者之間施加足底壓力來模擬
    個體化的受試者狀況,並且考慮不同步態時期間鞋子與地面之間的角
    度關係,透過此項技術能更進一步了解鞋大底與地板實際接觸面積與
    防滑性能的結果。
    由本研究結果發現球鞋在乾燥地板條件下,鞋大底條紋紋路設計
    的結構會影響球鞋的防滑性能表現,當條紋寬度越大時能得到更好的
    地板防滑反作用力,而由結果可推得此一現象與鞋底和地面實際接觸
    面積的大小有極大關聯性,當鞋底與地面接觸時實際截面積越大,地
    板給予的防滑反作用力越大,就成本和時間而言,此計算過程比機械
    測試更有效,並且可以在產品開發的早期設計階段為製鞋業帶來明顯
    的好處。


    The research uses computer numerical analysis technology to evaluate the
    mechanical characteristics of human feet and sports shoes. This analysis
    technology can replace the testing of developing samples. Its advantages
    include reducing material development costs, lowering labor costs, and
    minimizing the error based on human experience. Assessing the relevant
    indicators of sports shoes is essential to quantify the functions of sports
    shoes, such as anti-skid performance, shock absorption performance and
    resilience performance. In the highly competitive footwear market these
    days, computer numerical analysis technology has become a solution to
    accelerating product development and providing customized products.
    This technology built a state-of-the-art finite element model (FE) of shoes
    through computer engraving technology. Pressure is applied to the sole of
    the subjects to simulate the individualized condition, and the angles
    between shoes and the ground in different gait situations are taken into
    consideration. Through this technology a better understanding of the
    correlation between the amount of contact surface of the shoe outsoles to
    the ground and the anti-slip performance could be gained.
    The results show that, on the dry ground, the structure of the sole tread
    design affects the anti-slip performance of the shoes; the wider the tread
    grooves, the more the anti-slip reaction. The results demonstrate that this
    phenomenon is highly correlated to the amount of contact area between the
    outsole and the ground; the more the contact area, the more the anti-slip
    counter force from the ground.
    In terms of cost and time, this calculation process is more efficient than
    mechanical testing. It can also bring about significant benefits to the shoe
    industry in the early design stage of product development.

    中文摘要 ............................................... III ABSTRACT ................................................ IV 誌謝 ..................................................... V 目錄 .................................................... VI 圖目錄 .................................................. IX 第一章 緒論 ............................................ 1 1.1 研究背景、動機與目的..................................1 1.2 運動鞋介紹 ...........................................3 1.2.1 運動鞋結構層與功能介紹..............................5 1.2.2 運動鞋大底材質與紋路介紹............................6 1.3 步態時期介紹 .........................................7 1.4 步行時造成滑倒之因素 .................................8 1.5 鞋大底防滑性能表現的機械測試 ........................11 1.6 鞋大底防滑性能表現的電腦模擬測試 ....................12 1.7 文獻回顧 ............................................13 1.8 本文架構 ............................................15 第二章 材料與方法 ...................................... 16 2.1 有限元素分析簡介.....................................16 2.2 全鞋模型建立與地板模型建立...........................19 2.2.1 全鞋模型建立 ......................................20 2.2.2 地板模型建立 ......................................21 2.3 步態期間的足底壓力測量...............................22 2.4 簡易鞋大底模型與簡易顆粒狀地板模型建立...............25 2.5 全鞋模型與地板模型之有限元素分析.....................29 2.6 簡易鞋大底模型與簡易顆粒狀地板模型之有限元素分析 .....33 2.7 模擬條件設定與結果輸出 ..............................34 2.8 簡易鞋大底模型與全鞋模型結果相互驗證 ................35 第三章 結果與結論 ...................................... 36 3.1 收斂性分析結果 ......................................36 3.1.1 簡易鞋大底與簡易顆粒狀地板模型之收斂性分析結果.....36 3.2 不同材料的平面地板對全鞋模型防滑性能的影響...........38 3.3 條紋寬度不同對於全鞋模型防滑性能的影響...............39 3.4 簡易鞋大底模型-截面積固定條紋寬度對防滑性能的影響....41 3.5 簡易鞋大底模型-截面積大小對防滑性能的影響............42 3.6 簡易鞋大底模型與全鞋模型結果相互驗證 ................43 3.7 截面積大小與地板防滑反力之間的相關性 ................47 第四章 討論 ........................................... 50 4.1 地板條件對於防滑性能的影響...........................50 4.2 鞋大底條紋寬度對於防滑性能的影響.....................51 4.3 條紋結構對於防滑性能的影響...........................52 4.4 全鞋模型不同條紋寬度.................................53 4.5 簡化鞋大底模型數值模擬與分析 ........................54 4.6 研究限制 ............................................55 第五章 結論與未來展望 .................................. 57 5.1 結論 ................................................57 5.2 未來展望 ............................................57 參考文獻 ................................................ 59

    參考文獻
    1.McPoil,T.G.,et al.Athletic Footwear: Design, Performance and
    Selection Issues. Journal of Science and Medicine in Sport.
    2000, 3, 260-267.
    2.Gronqvist,R,et al.Measurement of Slipperiness: Fundamental
    Concepts and Definitions. Ergonomics. 2001, 44, 1102-1117.
    3.ASTM.Standard Test Method for Measuring the Coefficient of
    Friction for Evaluation of Slip Performance of Footwear and
    Test Surfaces/Flooring Using a Whole Shoe Tester. ASTM
    International, 2011.
    4.Hanson,et al.Predicting Slips and Falls Considering Required
    and Available Friction. Ergonomics. 1999, 42, 1619-1633.
    5.Chang,W.R,et al.The Role of Friction in the Measurement of
    Slipperiness, Part 2: Survey of Friction Measurement Devices.
    Ergonomics. 2001, 44, 1233-1261.
    6.Burnfield,J.M.,et al.Prediction of Slips: An Evaluation of
    Utilized Coefficient of Friction and Available Slip Resistance.
    Ergonomics. 2006, 49, 982-995.
    7.Powers,C.M.,et al.Assessment of Walkway Tribometer Readings
    in Evaluating Slip Resistance: A Gait-Based Approach. J
    Forensic Sci. 2007, 52, 400-405.
    8.Moghaddam,S.R.M.,et al.Predictive Multiscale Computational
    Model of Shoe-Floor Coefficient of Friction. Journal of
    Biomechanics. 2018, 66, 145-152.
    9.Beschorner,K.E,et al.Development of a Computational Model for
    Shoe-Floor Contaminant Friction. Mechanical Engineering,
    Bachelor of Science, University of Illinois Urbana-Champaign,
    Illinois, United States, 2004.
    10. Sun,Z.,et al.Finite Element Analysis of Footwear and Ground
    Interaction. Strain. 2005, 1475-1305.
    11. Huang,Q.,et al.Feasibility of Application of Finite Element
    Method in Shoe Slip Resistance Test. Leather and Footwear
    Journal. 2018, 18, 139-148.
    12. Kim,S.H.,et al.Coupled Foot-Shoe-Ground Interaction Model
    to Assess Landing Impact Transfer Characteristics to Ground
    Condition. Interaction and Multiscale Mechanics. 2012, 5,
    75-90.
    13.Qiu,T.X.,et al.Finite Element Modeling of a 3D Coupled
    Foot-Boot Model.Medical Engineering & Physics. 2011, 33,
    1228-1233.
    14.Cavanagh,P.R.,et al.A. Pressure Distribution under
    Symptom-Free Feet During Barefoot Standing. Foot & Ankle. 2016,
    7, 262-278.
    15.Miehe,C.,et al.A Micro-Macro Approach to Rubber-Like
    Materials? Part I: The Non-Affine Micro-Sphere Model of Rubber
    Elasticity. Journal of the Mechanics and Physics of Solids.
    2004, 52, 2617-2660.
    16. Verdejo,R,et al.Heel–Shoe Interactions and the Durability
    of Eva Foam Running-Shoe Midsoles. Journal of Biomechanics.
    2004, 37, 1379-1386.
    17. Goske,S.,et al.Reduction of Plantar Heel Pressures: Insole
    Design Using Finite Element Analysis. Journal of Biomechanics.
    2006, 39, 2363-2370.
    18. Sissler,L.,et al.A 3-D Finite Element Model of the Foot-Shoe
    Structure During a Walking Cycle for Shoe Sole Design. Footwear
    Science. 2013, 5, S36-S37.
    19. Benkahla,J.,et al.Experimental and Numerical Simulation of
    Elastomeric Outsole Bending. Experimental Mechanics. 2012, 52,
    1461-1473.
    20. Chen,W.M.,et al.Plantar Pressure Relief under the Metatarsal
    Heads – Therapeutic Insole Design Using Three-Dimensional
    Finite Element Model of the Foot. Journal of Biomechanics. 2015,
    48, 659-665.
    21. Cheung,T.M,et al.Finite Element Modeling of the Human Foot
    and Footwear. In Proceedings of the ABAQUS Users’ Conference
    2006.
    22. ISO. Personal Protective Equipment-Footwear-Test Method for
    Slip Resistance. Switzerlan: International Organization for
    Standardization, 2012.
    23. Menz,H.B.,et al.Reliability of the Gaitrite® Walkway System
    for the Quantification of Temporo-Spatial Parameters of Gait
    in Young and Older People. Gait and Posture. 2004, 20, 20-25.
    24. Miller, J.M.,et al.“Slippery” Work Surface: Towards a
    Performance Definition and Quantitative Coefficient of
    Friction Criteria. Journal of Safety Research. 1983, 14,
    145–158.
    25. Nigg,B.M.,et al.The Influence of Playing Surfaces on the Load
    on the Locomotor System and on Football and Tennis Injuries.
    Sports Medicine. 1988, 5, 375-385.
    26. Ali,A.S.,et al.Friction Behavior of Epoxy Floor Tiles Filled
    by Carbon Nanoparticles. Journal of the Egyptian society of
    tribology. 2018, 15, 1-10.
    27. ASTM. Standard Test Method for Using a Portable Inclineable
    Articulated Strut Slip Tester (Plast). ASTM International,
    2005.
    28. Li,K.W.,et al.Friction between Footwear and Floor Covered
    with Solid Particles under Dry and Wet Conditions.
    International Journal of Occupational Safety and Ergonomics.
    2014, 20, 43-53.
    29. Mohamed,M.K.,et al.Friction Coefficient of Rubber Shoes
    Sliding against Ceramic Flooring. KGK-Rubberpoint. 2012,
    52-57.
    30. Moghaddam,M.,et al.Finite Element Analysis of Contribution
    of Adhesion and Hysteresis to Shoe-Floor. Science in
    Engineering, Master, University of Wisconsin-Milwaukee,
    Milwaukee, Wisconsin, U.S, 2013.
    31. Shibataa, K.,et al. Evaluation for Slip Resistance of Floor
    Sheets and Shoe Sole with Newly Developed Mobile Friction
    Measurement System. In Proceedings of the 19th Triennial
    Congress of the IEA, Melbourne 2015.
    32. Li, K.W.,et al.The Effect of Shoe Soling Tread Groove Width
    on the Coefficient of Friction with Different Sole Materials,
    Floors, and Contaminants. Applied Ergonomics. 2004, 35,
    499-507.
    33. Popova,E.,et al.The Research Works of Coulomb and Amontons
    and Generalized Laws of Friction. Friction. 2015, 3, 183-190.
    34. Etsion,I.,et al.A Static Friction Model for Elastic-Plastic
    Contacting Rough Surfaces. Journal of Tribology. 2004, 126,
    34-40.
    35. Krim,J.,et al. Resource Letter_Fmmls-1_Friction at
    Macroscopic and Microscopic Length Scales. American
    association of physics teachers 2002, 70, 890-897.
    36. Kanaga Karuppiah,K.S.,et al.Evaluation of Friction Behavior
    and Tts Contact-Area Dependence at the Micro- and Nano-Scales.
    Tribology Letters. 2009, 36, 259-267.
    37. Johnson,K.L.,et al.Surface Energy and the Contact of Elastic
    Solids. Proceedings of the Royal Society A: Mathematical,
    Physical and Engineering Sciences. 1971, 324, 301-313.
    38. Strandberg,L.,et al.The Effect of Conditions Underfoot on
    Falling and Overexertion Accidents. Ergonomics. 1985, 28,
    131-147.
    39. Chowdhury,S.K.,et al.Adhesion and Adhesional Friction at the
    Contact between Solids. Wear. 1994, 174, 9-19.

    QR CODE