簡易檢索 / 詳目顯示

研究生: 柳彥宇
Yan-Yu Liu
論文名稱: 2×2空頻區塊碼於通用濾波多載波系統之研究
Research on 2×2 Space-Frequency Block Coding Universal-Filtered Multi-Carrier Systems
指導教授: 張立中
Li-Chung Chang
口試委員: 曾德峰
Der-Feng Tseng
劉馨勤
Hsin-Chin Liu
陳永芳
Yung-Fang Chen
曾恕銘
Shu-Ming Tseng
張立中
Li-Chung Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 73
中文關鍵詞: 通用濾波多載波空頻區塊碼線性轉換峰均值功率比
外文關鍵詞: Universal-Filtered Multi-Carrier, SFBC, Linear Transform, PAPR
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著第五代行動通訊系統(5G)的快速發展,越來越多嶄新的傳輸技術被提出,而通用濾波多載波系統(UFMC)擁有和正交分頻多工系統(OFDM)相似的系統架構,並且將子載波分成多個子頻帶,然後在每個子頻帶上進行濾波的設計可以降低頻譜的旁波瓣位準(sidelobe level),避免OFDM系統的高旁波瓣位準所帶來的載波間干擾(ICI),同時減少循環字首(Cyclic Prefix)的消耗,且和FBMC系統對每一個子載波濾波相比,大幅的減少了複雜度以及濾波器的長度所造成的成本開銷。因此,針對5G複雜的傳輸環境時,UFMC傳輸技術做為候選是具有其優勢的。
多輸入多輸出(Multi-input Multi-output, MIMO)為長期演進技術進階版(LTE-A)的主要技術規格。因此,本篇論文提出2×2空頻區塊碼(Space-Frequency Block Code, SFBC)應用於通用濾波多載波系統(SFBC-UFMC),並且對不同的接收端進行誤碼率(BER)分析;在MIMO系統中通常會加入線性轉換(Linear Transform)來改善系統的效能,因此,本篇論文也採用不同的線性轉換技術進行分析。但是SFBC以頻域做編碼在結合線性轉換時會破壞原本傳輸訊號的順序以及架構,導致峰均值功率比(Peak-to-Average Power Ratio, PAPR)的提升。本篇論文以較低的PAPR作為需求來設計編碼方式,在模擬結果中,提出的編碼方式可以保有較低的PAPR並且在BER上可以維持相近的效能。


With the rapid development of the 5th Generation wireless systems (5G), more and more new transmission technologies have been proposed, and the Universal Filter Multi-Carrier System (UFMC) has a system architecture similar to the Orthogonal Frequency Division Multiplexing (OFDM) system and the design of divide the sub-carrier into multiple sub-bands, and then filter on each sub-band can reduce the sidelobe level of the spectrum and avoid the inter-carrier interference (ICI) caused by the high sidelobe level of the OFDM system, while reducing the consumption of the Cyclic Prefix, and greatly reducing the complexity compared to the filtering of each subcarrier by the FBMC system. Therefore, UFMC transmission technology has its advantages as a candidate for 5G complex transmission environment.
Multi-Input Multi-Output (MIMO) is the main technical specification of the Long Term Evolution Advanced (LTE-A).Therefore,in this paper 2×2 Space-Frequency Block Code (SFBC) is applied to Universal Filtered Multi-Carrier system (SFBC-UFMC), and the bit error rate (BER) analysis is performed on different receivers. In the MIMO system, Linear Transform is usually added to improve the performance of the system. Therefore, this paper also uses different linear transform techniques for analysis. However, the SFBC coding in the frequency domain will destroy the order and structure of the original transmission signal when combined with the linear transform, resulting in the increase of Peak-to-Average Power Ratio (PAPR). In this paper, the coding method is designed for lower PAPR. In the simulation results, the proposed coding method can maintain a lower PAPR and similar BER performance.

摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第1章 序論 1 1.1 研究動機與目的 1 1.2 論文架構 2 第2章 系統架構與相關理論介紹 3 2.1 通用濾波多載波系統 3 2.1.1 傳送端架構 3 2.1.1.1 離散傅立葉轉換 7 2.1.1.2 離散哈特利轉換 7 2.1.2 通道模型 8 2.1.3 接收端架構 11 2.1.3.1 基於快速傅立葉轉換之接收端架構 12 2.1.3.2 反向接收端架構 13 2.1.3.3 逼零接收端架構 14 2.1.3.4 最小均方誤差接收端架構 15 2.2 峰均值功率比 15 2.3 現有多輸入多輸出通用濾波多載波系統 16 2.3.1 空時區塊碼通用濾波多載波系統 16 2.3.1.1 傳送端架構 17 2.3.1.2 接收端架構 18 2.3.2 時間反轉空時區塊碼通用濾波多載波系統 21 2.3.2.1 傳送端架構 22 2.3.2.2 接收端架構 23 第3章 提出的系統架構 26 3.1 空頻區塊碼應用於通用濾波多載波系統 26 3.2 空頻區塊碼通用濾波多載波系統架構 27 3.2.1 傳送端架構 27 3.2.2 接收端架構 28 3.2.2.1 基於快速傅立葉轉換之接收端架構 28 3.2.2.2 反向策略之接收端架構 32 3.2.2.3 解碼器複雜度分析 33 3.2.3 降低峰均值功率比的編碼方式 36 第4章 模擬結果與討論 37 4.1 通用濾波多載波系統和正交分頻多工系統的效能分析 37 4.1.1 不同子載波個數PAPR效能 38 4.1.2 有無線性轉換PAPR效能 39 4.1.3 有無線性轉換不同通道下的BER效能 40 4.1.3.1 AWGN通道 40 4.1.3.2 EPA通道 41 4.1.3.3 EVA通道 42 4.1.3.4 TDL-A通道 43 4.2 2×2 MIMO-UFMC系統BER效能 44 4.2.1 不同通道下的BER效能 44 4.2.1.1 EPA通道 45 4.2.1.2 EVA通道 46 4.2.1.3 TDL-A通道 47 4.2.2 不同Decoder在不同通道下的BER效能 48 4.2.2.1 EPA通道 49 4.2.2.2 EVA通道 50 4.2.2.3 TDL-A通道 51 4.3 加入線性轉換SFBC-UFMC系統效能分析 53 4.3.1 有無線性轉換PAPR效能 53 4.3.2 不同編碼方式PAPR效能 55 4.3.3 不同編碼方式BER效能 57 4.3.3.1 EPA通道 58 4.3.3.2 EVA通道 59 4.3.3.3 TDL-A通道 60 4.3.4 有無線性轉換不同Decoder的BER效能 61 4.3.4.1 EPA通道 62 4.3.4.2 EVA通道 63 4.3.4.3 TDL-A通道 64 第5章 結論與未來研究方向 66 附錄A 67 附錄B 69 參考文獻 72

[1] HUAWAI, "5G時代十大應用場景白皮書," 2017.
[2] G. Wunder et al., "5GNOW: Challenging the LTE Design Paradigms of Orthogonality and Synchronicity," in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), 2013, pp. 1-5.
[3] V. Vakilian, T. Wild, F. Schaich, S. t. Brink, and J. Frigon, "Universal-filtered multi-carrier technique for wireless systems beyond LTE," in 2013 IEEE Globecom Workshops (GC Wkshps), 2013, pp. 223-228.
[4] B. Farhang-Boroujeny, "OFDM Versus Filter Bank Multicarrier," IEEE Signal Processing Magazine, vol. 28, no. 3, pp. 92-112, 2011.
[5] F. Schaich and T. Wild, "Waveform contenders for 5G — OFDM vs. FBMC vs. UFMC," in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), 2014, pp. 457-460.
[6] A. F. Almutairi, M. Al-Gharabally, and A. Krishna, "Performance Analysis of Hybrid Peak to Average Power Ratio Reduction Techniques in 5G UFMC Systems," IEEE Access, vol. 7, pp. 80651-80660, 2019.
[7] M. B. Mabrouk, M. Chafii, Y. Louet, and F. Bader, "A Precoding-based PAPR Reduction Technique for UF-OFDM and Filtered-OFDM Modulations in 5G Systems," in European Wireless 2017; 23th European Wireless Conference, 2017, pp. 1-6.
[8] 3GPP-TS-36.104, "LTE;Evolved Universal Terrestrial Radio Access (E-UTRA);User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 14.3.0 Release 14)," 2017.
[9] 3GPP-TR-38.901, "5G;Study on channel model for frequencies from 0.5 to 100 GHz (3GPP TR 38.901 version 15.0.0 Release 15)," 2018.
[10] S. A. Cheema, K. Naskovska, M. Attar, B. Zafar, and M. Haardt, "Performance Comparison of Space Time Block Codes for Different 5G Air Interface Proposals," in WSA 2016; 20th International ITG Workshop on Smart Antennas, 2016, pp. 1-7.
[11] L. Zhang, C. He, J. Mao, A. Ijaz, and P. Xiao, "Channel estimation and optimal pilot signals for universal filtered multi-carrier (UFMC) systems," in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017, pp. 1-6.
[12] M. Wu, J. Dang, Z. Zhang, and L. Wu, "An Advanced Receiver for Universal Filtered Multicarrier," IEEE Transactions on Vehicular Technology, vol. 67, no. 8, pp. 7779-7783, 2018.
[13] S. Buzzi, C. D’Andrea, D. Li, and S. Feng, "MIMO-UFMC Transceiver Schemes for Millimeter-Wave Wireless Communications," IEEE Transactions on Communications, vol. 67, no. 5, pp. 3323-3336, 2019.
[14] S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, 1998.
[15] G. H. Golub and C. F. V. Loan, "Matrix computations (3rd ed.)," Johns Hopkins University Press, 1996.
[16] Y. Meng, M. You, and J. Liu, "A novel transmit diversity scheme for LTE-Advanced uplink," in 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, 2009, pp. 221-225.
[17] C. Huang, W. Chang, and L. Chang, "A modified Low PAPR space-frequency block coding scheme for SC-FDMA," in 2012 IEEE International Conference on Communication, Networks and Satellite (ComNetSat), 2012, pp. 98-102.
[18] P. Lynch, "The Dolph–Chebyshev Window: A Simple Optimal Filter," Monthly Weather Review, vol. 125, no. 4, pp. 655-660, 1997/04/01 1997.
[19] F. Schaich, T. Wild, and Y. Chen, "Waveform Contenders for 5G - Suitability for Short Packet and Low Latency Transmissions," in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), 2014, pp. 1-5.
[20] E. M. Yushi Shen, "Channel Estimation in OFDM Systems," freescale semiconductor Application Note, 2006.

無法下載圖示 全文公開日期 2024/08/20 (校內網路)
全文公開日期 2029/08/20 (校外網路)
全文公開日期 2029/08/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE