簡易檢索 / 詳目顯示

研究生: 潘勇誌
Yung-Chih Pan
論文名稱: 整合運動感測器及雷射測距儀之滾球軌跡追蹤控制系統
Integration of a Motion Sensor and Laser-Ranging Sensors with an Application in Ball-Beam Trajectory Tracking Control System
指導教授: 施慶隆
Ching-Long Shih
口試委員: 李文猶
Wen-Yo Lee
黃志良
Chih-Lyang Hwang
施慶隆
Ching-Long Shih
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 82
中文關鍵詞: 滾球與球桿系統軌跡追蹤運動感測器
外文關鍵詞: ball-beam system, trajectory tracking, motion sensor
相關次數: 點閱:229下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在應用運動感測器及雷射測距儀於滾球與球桿平衡控制系統,實現滾球的定點與軌跡追蹤控制。運動感測器包含加速度計及陀螺儀,經由互補濾波器融合量測數據,使得濾波後的角度訊號更為準確,進而適用於球桿角度的狀態回授。滾球位置則由安裝於球桿兩端的雷射測距儀來共同量測,並使用卡爾曼濾波器處理雷射測距儀的量測訊號。本文首先推導滾球與球桿系統的數學模型,接著探討感測器於滾球與球桿平衡控制系統上的可行性與其整合,最後設計PD-PI與LQR-PI兩種串級控制器,分別以滾球定點平衡、多定點平衡與軌跡追蹤實驗來驗證其控制性能。


    This thesis proposes utilizing a motion sensor and two laser-ranging sensors with an application in ball-beam control system to implement set-point and trajectory tracking control. To obtain accurate beam angle, a complementary filter is used to fuse the data measured by the motion sensor containing an accelerometer and a gyroscope. The ball position is measured by two laser-ranging sensors placed at both ends of the beam, and a Kalman filter is used to smooth the measurement data. This thesis first studies the mathematical model of the ball-beam system. In addition, this research discusses the feasibility assessment and integration of various sensors. Finally, two controllers, PD-PI and LQR-PI, are designed and their performance is verified via the experiments of single-point position control, multi-point position control and trajectory tracking control.

    摘要 Abstract 誌謝 目錄 圖表索引 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.3 論文大綱 第二章 滾球與球桿系統數學模型 2.1 滾球與球桿系統 2.2 滾球與球桿系統數學模型 第三章 感測器與系統整合 3.1 加速度計 3.1.1 單軸傾角計算 3.1.2 雙軸傾角計算 3.1.3 加速度計校正 3.2 陀螺儀 3.2.1 角度計算 3.2.2 陀螺儀校正 3.3 距離感測器 3.3.1 訊號反射率量測 3.3.2 量測距離校正 3.3.3 雙端距離量測架構 3.4 互補濾波器 3.5 卡爾曼濾波器 3.5.1 系統模型 3.5.2 離散卡爾曼濾波器演算法 3.5.3 實驗結果 第四章 滾球與球桿控制系統實現 4.1 控制系統硬體架構 4.2 球桿機構系統識別 4.3 PD-PI控制器設計 4.4 LQR-PI控制器設計 第五章 實驗結果 5.1 滾球定點位置控制實驗 5.1.1 PD-PI定點位置控制 5.1.2 LQR-PI定點位置控制 5.2 滾球多定點位置控制實驗 5.2.1 PD-PI多定點位置控制 5.2.2 LQR-PI多定點位置控制 5.3 滾球軌跡追蹤控制實驗 5.3.1 PD-PI軌跡追蹤控制 5.3.2 LQR-PI軌跡追蹤控制 第六章 結論 6.1 結論 6.2 建議 參考文獻

    [1] J. Hauser, S. Sastry, and P. Kokotovic, “Nonlinear control via approximate input-output linearization: the ball and beam example,” IEEE Transactions on Automatic Control, vol. 37, no. 3, pp. 392-398, 1992.
    [2] M. Ramírez-Neria, H. Sira-Ramírez, R. Garrido-Moctezuma, and A. Luviano-Juarez, “Linear robust generalized proportional integral control of a ball and beam system for trajectory tracking tasks,” 2016 American Control Conference, pp. 4719-4724, 2016.
    [3] S. K. Valluru, M. Singh, and S. Singh, “Prototype design and analysis of controllers for one dimensional ball and beam system,” 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems, pp. 1-6, 2016.
    [4] A. A. Ezzabi, K. C. Cheok, and F. A. Alazabi, “A nonlinear backstepping control design for ball and beam system,” 2013 IEEE 56th International Midwest Symposium on Circuits and Systems, pp. 1318-1321, 2013.
    [5] W. Yu and F. Ortiz, “Stability analysis of PD regulation for ball and beam system,” Proceedings of 2005 IEEE Conference on Control Applications, pp. 517-522, 2005.
    [6] Z. H. Pang, G. Zheng, and C. X. Luo, “Augmented state estimation and LQR control for a ball and beam system,” 2011 6th IEEE Conference on Industrial Electronics and Applications, pp. 1328-1332, 2011.
    [7] M. Bai, H. Lu, J. Su, and Y. Tian, “Motion control of ball and plate system using supervisory fuzzy controller,” 2006 6th World Congress on Intelligent Control and Automation, pp. 8127-8131, 2006.
    [8] R. M. Hirschorn, “Incremental sliding mode control of the ball and beam,” IEEE Transactions on Automatic Control, vol. 47, no. 10, pp. 1696-1700, 2002.
    [9] T. R. Maruthi and A. D. Mahindrakar, “Robust stabilization using time-scaling and Lyapunov redesign: The ball-beam system,” 2010 11th International Conference on Control Automation Robotics & Vision, pp. 1661-1666, 2010.
    [10] A. Brill, J. A. Frank, and V. Kapila, “Using inertial and visual sensing from a mounted smartphone to stabilize a ball and beam test-bed,” 2016 American Control Conference, pp. 1335-1340, 2016.
    [11] J. Wieneke and W. N. White, “A feasibility assessment of using ultrasonic sensor position feedback for a ball-and-beam apparatus,” Proceedings of the 2011 American Control Conference, pp. 687-692, 2011.
    [12] P. Gui, L. Tang, and S. Mukhopadhyay, “MEMS based IMU for tilting measurement: Comparison of complementary and Kalman filter based data fusion,” 2015 IEEE 10th Conference on Industrial Electronics and Applications, pp. 2004-2009, 2015.
    [13] A. T. Simmons and J. Y. Hung, “Hybrid control of systems with poorly defined relative degree: the ball-on-beam example,” 30th Annual Conference of IEEE Industrial Electronics Society, vol. 3, pp. 2436-2440, 2004.
    [14] H. Sira-Ramirez, “On the control of the “ball and beam” system: a trajectory planning approach,” Proceedings of the 39th IEEE Conference on Decision and Control, vol. 4, pp. 4042-4047, 2000.
    [15] F. Golnaraghi and B. C. Kuo, Automatic Control Systems, 9th ed., John Wiley & Sons, 2009.
    [16] S. Luczak, W. Oleksiuk, and M. Bodnicki, “Sensing tilt with MEMS accelerometers,” IEEE Sensors Journal, vol. 6, no. 6, pp. 1669-1675, 2006.
    [17] C. J. Fisher, “Using an accelerometer for inclination sensing,” Analog Devices, Application note, 2010.
    [18] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, 4th ed., John Wiley & Sons, 2012.
    [19] M. F. Rahmat, H. Wahid, and N. A. Wahab, “Application of intelligent controller in a ball and beam control system,” International Journal on Smart Sensing and Intelligent Systems, vol. 3, no. 1, pp. 45-60, 2010.
    [20] N. H. Jo and J. H. Seo, “A state observer for nonlinear systems and its application to ball and beam system,” IEEE Transactions on Automatic Control, vol. 45, no. 5, pp. 968-973, 2000.
    [21] R. Faragher, “Understanding the basis of the Kalman filter via a simple and intuitive derivation,” IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 128-132, 2012.
    [22] R. Mahony, T. Hamel, and J. M. Pflimlin, “Nonlinear complementary filters on the special orthogonal group,” IEEE Transactions on Automatic Control, vol. 53, no. 5, pp. 1203-1218, 2008.
    [23] S. P. Tseng, W. L. Li, C. Y. Sheng, J. W. Hsu, and C. S. Chen, “Motion and attitude estimation using inertial measurements with complementary filter,” 2011 8th Asian Control Conference, pp. 863-868, 2011.
    [24] InvenSense, “MPU-6000 and MPU-6050 product specification,” MPU-6050 datasheet, 2013.
    [25] STMicroelectronics, “World smallest time-of-flight ranging and gesture detection sensor application programming interface,” VL53L0X user manual, 2016.
    [26] Microchip Technology, “General purpose, 16-Bit flash microcontrollers with XLP technology,” PIC24FV16KM204 family datasheet, 2013.
    [27] 施慶隆,控制系統分析與設計,全華圖書,2006。

    無法下載圖示 全文公開日期 2023/01/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE