簡易檢索 / 詳目顯示

研究生: 陳怡蓁
I-Chen Chen
論文名稱: 製備與分析應用於輻射冷卻之二氧化鈦-二氧化矽-聚甲基丙烯酸甲酯塗層
Synthesis and characterization of TiO2-SiO2-PMMA coating for radiative cooling applications
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
游進陽
Chin-Yang Yu
周育任
yu-jen chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 115
中文關鍵詞: 被動輻射冷卻二氧化矽噴霧熱裂解法噴霧乾燥法二氧化鈦塗層
外文關鍵詞: Passive radiative cooling, SiO2, Spray pyrolysis, Spray drying, TiO2, coating
相關次數: 點閱:321下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

自工業革命以來,大量的溫室氣體導致全球暖化的狀況日益嚴重,為了減少製冷設備所消耗的能源,可利用輻射冷卻來降低溫度。輻射冷卻系統為一種被動的冷卻方式,在不須消耗能源以及不排放溫室氣體的情況下,可透過由大氣窗口區域(波長 8 至 13 μm)向外太空散發熱輻射達到冷卻效果。二氧化矽粉末在大氣窗口內具有優秀的發射能力,聚甲基丙烯酸甲酯做為黏著劑於紅外光譜下吸收率低,二氧化鈦粉末於太陽輻射下具高反射率,因此本實驗將結合此三種材料製備輻射冷卻塗層。
本研究將分為三個部分:首先,將利用不同粒徑(0.4、1.0、2.1、3.7以及 6.8 微米) 之商用二氧化矽製備於輻射冷卻塗層(SiO2-PMMA coating),同時探討粒徑對於塗層冷卻能力的影響;接著,利用不同前驅物濃度與製備方式合成不同粒徑大小之二氧化矽。前驅物濃度分別為0.3、0.6 和 0.9 M,而製備方法包含噴霧熱裂解法(Spray pyrolysis, SP)與噴霧乾燥法(Spray drying, SD),並進行粉體以及塗層的分析;最後,以三種不同製備順序添加二氧化鈦於塗層中,以增強塗層的相對反射率,提高降溫效果。其中,將以 X 光繞射分析儀、氮氣吸/脫附分析儀、掃描式電子顯微鏡、傅立葉轉換紅外線光譜儀、紫外光/可見光/近紅外光譜儀及日曬溫度量測分別分析相組成、比表面積、表面形貌、紅外光發射光譜、漫反射光
譜以及塗層的冷卻效果。
實驗結果顯示不同粒徑之商粉以 0.4 微米商粉二氧化矽所製備的塗層具有最佳的降溫效果,最大溫差可達約 7.8 °C。另外,以噴霧熱裂解法合成的 0.7 μm 二氧化矽粉末製備的冷卻塗層,在相同環境下與商粉相比,可達到更佳的熱輻射發射能力以及冷卻效果。此外,以(PMMA-TiO2)- SiO2塗層的製備順序添加二氧化鈦於塗層中,可有效增強塗層之太陽反射率,並達到更佳的降溫效果。


Since the industrial revolution, a large amount of greenhouse gas has caused global warming to become more and more serious. In order to reduce the energy consumption of cooling equipment, radiative cooling phenomenon was used to decrease the nvironmental temperature. Radiative cooling is a passive cooling technology, which achieves ooling by emitting heat radiation to outer space from the atmospheric window region (8~13 μm wavelength) without consuming energy and releasing greenhouse gases. SiO2 has xcellent emission ability in the atmospheric window, PMMA as the binder has low absorptivity in the infrared spectrum, and TiO2 has high reflectivity under solar radiation. Thus, in this experiment, these three materials will be combined to prepare the radiative cooling coating.
In this study, the experiment was divided into three parts: First, this study prepared the SiO2-PMMA coatings using commercial SiO2 powders including various particle sizes (0.4, 1.0, 2.1, 3.7, and 6.8 μm) and discussed the effect of SiO2 particle size on the cooling performance of the coatings; next, this study synthesized SiO2 with various particle sizes by various precursor concentrations 0.3, 0.6 and 0.9 M) and preparation methods (spray pyrolysis and spray drying). Also, the cooling performance of the powders and coatings was analysed; finally, TiO2 was added to the coating in three various preparation sequences for enhancing the relative reflectivity of the coating and improving the cooling effects. Phase composition, surface area, surface morphology, particle distribution, emissive spectrum, solar reflectance spectrum, and cooling performance of the coatings were studied using X-ray diffraction, nitrogen adsorption/desorption isotherm (BET), scanning electron
microscopy, Fourier transform infrared spectroscopy, UV-Vis-NIR spectroscopy, and temperature measurements.
The experimental results showed that among the commercial SiO2 powders with various particle sizes, the coating prepared with 0.4 μm commercial SiO2 particles has the best cooling performance, and the maximum temperature difference reached about 7.8 °C. In addition, compared with commercial powder in the same environment, the SiO2-PMMA coating prepared by 0.7 μm SiO2 particles synthesized by spray pyrolysis method can achieve better heat radiation emission ability and cooling effect. Moreover, adding TiO2 to the coating in the preparation sequence of (PMMA-TiO2)-SiO2 coating effectively enhanced the solar reflectance of the coating and achieve better cooling effect.

目錄 摘要 i Abstract iii 致謝 v 圖目錄 x 表目錄 xvi 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 第二章 文獻回顧 5 2.1 輻射冷卻 5 2.1.1 輻射冷卻基礎 5 2.1.2 大氣輻射 7 2.1.3 發射率 9 2.1.4 寬帶和選擇性輻射發射體 10 2.2 輻射冷卻材料 12 2.2.1 輻射冷卻材料之比較 12 2.2.2 發射材料–二氧化矽 15 2.2.3 反射材料–二氧化鈦 16 2.3 二氧化矽-聚甲基丙烯酸甲酯塗層(SiO2-PMMA coating) 19 2.4 二氧化矽之合成 23 2.4.1 溶膠-凝膠法 23 2.4.2 噴霧乾燥法 (Spray drying, SD) 24 2.4.3 噴霧熱裂解法 (Spray pyrolysis, SP) 25 第三章 實驗方法與目的 27 3.1 實驗設計 27 3.2 實驗藥品 31 3.3 實驗儀器設備 32 3.4 樣品製備方法 34 3.4.1 塗層製備 34 3.4.2 合成二氧化矽粉末 35 3.4.3 製備二氧化鈦-二氧化矽-聚甲基丙烯酸甲酯塗層 33 3.5 樣品性質及分析方法 35 3.5.1 X 光繞射分析儀 35 3.5.2 氮氣吸/脫附分析儀 36 3.5.3 場發射雙束型聚焦離子束顯微鏡 38 3.5.4 傅立葉轉換紅外線光譜儀 41 3.5.5 紫外光/可見光/近紅外光譜儀 42 3.5.6 日曬溫度量測 43 第四章 實驗結果 44 4.1 不同粒徑大小之商用二氧化矽性質分析 44 4.1.1 商用粉末之晶相分析 45 4.1.2 商用粉末之形貌、粒徑大小及比表面積分析 46 4.1.3 商用粉末之發射能力分析 49 4.1.4 不同粒徑商用粉末製備之 SiO2-PMMA 塗層的粉體分布51 4.1.5 不同粒徑商用粉末製備之 SiO2-PMMA 塗層的發射能力54 4.1.6 不同粒徑商用粉末製備之 SiO2-PMMA 塗層的冷卻效果56 4.2 合成二氧化矽粉末性質分析 59 4.2.1 合成粉末之晶相分析 59 4.2.2 合成粉末之形貌、粒徑大小及比表面積分析 60 4.2.3 合成粉末之發射能力 63 4.2.4 不同合成粉末製備之 SiO2-PMMA 塗層的粉體分布 65 4.2.5 不同合成粉末製備之 SiO2-PMMA 塗層的發射能力 68 4.2.6 不同合成粉末製備之 SiO2-PMMA 塗層的冷卻效果 70 4.3 不同製備順序之 TiO2-SiO2-PMMA 塗層性質分析 72 4.3.1 塗層的粉體分布 72 4.3.2 塗層的反射率 75 4.3.3 塗層的冷卻效果 77 第五章 結果與討論 79 5.1 商用和合成之二氧化矽粉末性質分析 79 5.2 不同粒徑大小之二氧化矽粉末對冷卻效果的影響 82 5.3 不同製備順序之 TiO2-SiO2-PMMA 塗層對冷卻效果的影響 85 第六章 結論 88 第七章 未來工作 89 參考文獻 90

[1] L. Perkins, Global Temperature Anomalies from 1880 to 2021,
https://svs.gsfc.nasa.gov/4964
[2] NASA, Overview: Weather, Global Warming, and Climate Change,
https://climate.nasa.gov/resources/global-warming-vs-climate-change/
[3] 台灣國家公園, 溫室效應與全球暖化,
https://np.cpami.gov.tw/chinese/index.php?option=com_content&view=article&id=947&It
emid=33
[4] 中央氣象局數位科普網, 溫室氣體與全球暖化,
https://edu.cwb.gov.tw/PopularScience/index.php/weather/272-
%E6%BA%AB%E5%AE%A4%E6%B0%A3%E9%AB%94%E8%88%87%E5%85%A8
%E7%90%83%E6%9A%96%E5%8C%96
[5] 許晃雄, 全球暖化, https://nrch.culture.tw/twpedia.aspx?id=3323
[6] W.M. Organization, State of Climate in 2021: Extreme events and major impacts,
https://public.wmo.int/en/media/press-release/state-of-climate-2021-extreme-events-andmajor-impacts
[7] 李宗祐, 20 世紀 台灣暖化超速 快全球兩倍, https://e-info.org.tw/node/63087
[8] 台灣電力股份有限公司, 台電系統歷年發購電量,
https://www.taipower.com.tw/tc/chart_m/a01
[9] 經濟部, 能源發展綱領,
https://www.moeaboe.gov.tw/ECW/populace/content/ContentLink2.aspx?menu_id=48
[10] 辦公室節能應用技術手冊,
https://www.ecct.org.tw/Knowledge/knowledge_more?id=e9a291f28f744c3e88b8d6b4c05
e7b20
[11] F. Arago, Annuaire de Bureau des Longitudes pour l’an, (1828), 145-152.
[12] W. Li, S. Fan, Radiative cooling: harvesting the coldness of the universe. , Opt.
Photon. News, 30 (2019), 32-39.
[13] P.X. X. Lu, H. Wang, T. Yang, J. Hou, Cooling potential and applications prospects of
passive radiative cooling in buildings: The current state-of-the-art, 65 (2016), 1079-1097.
[14] M. Santamouris, J. Feng, Recent progress in daytime radiative cooling: is it the air
conditioner of the future?, 8 (2018), 168.
[15] L. Chen, K. Zhang, M. Ma, S. Tang, F. Li, X. Niu, Sub-ambient radiative cooling and
its application in buildings, Building Simulation, 13 (2020), 1165-1189.
[16] W. Li, Y. Li, K.W. Shah, A materials perspective on radiative cooling structures for
buildings, Solar Energy, 207 (2020), 247-269.
[17] X. Li, W. Xie, C. Sui, P.-C. Hsu, Multispectral thermal management designs for net-
91
zero energy buildings., ACS Materials Letters, 2 (2020), 1624-1643.
[18] A.R. L. Zhu, K. X. Wang, M. Abou Anoma, S. Fan,, Radiative cooling of solar cells, 1
(2014), 32-38.
[19] W. Li, Y. Shi, K. Chen, L. Zhu, S. Fan, A comprehensive photonic approach for solar
cell cooling, Acs Photonics, 4 (2017), 774-782.
[20] Z. Wang, D. Kortge, J. Zhu, Z. Zhou, H. Torsina, C. Lee, P. Bermel, Lightweight,
passive radiative cooling to enhance concentrating photovoltaics, Joule, 4 (2020), 2702-
2717.
[21] P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, Y. Cui, Radiative
human body cooling by nanoporous polyethylene textile, Science 353 (2016), 1019-1023.
[22] E. Mu, Z. Wu, Z. Wu, X. Chen, Y. Liu, X. Fu, Z. Hu, A novel self-powering ultrathin
TEG device based on micro/nano emitter for radiative cooling, Nano Energy, 55 (2019),
494-500.
[23] Z. Zhan, M. ElKabbash, Z. Li, X. Li, J. Zhang, J. Rutledge, S. Singh, C. Guo,
Enhancing thermoelectric output power via radiative cooling with nanoporous alumina,
Nano Energy, 65 (2019), 104060.
[24] L. Fan, W. Li, W. Jin, M. Orenstein, S. Fan, Maximal nighttime electrical power
generation via optimal radiative cooling, Optics Express, 28 (2020), 25460-25470.
[25] S. Ishii, T.D. Dao, T. Nagao, Radiative cooling for continuous thermoelectric power
generation in day and night, Applied physics letters, 117 (2020), 013901.
[26] C. Liu, J. Fan, H. Bao, Hydrophilic radiative cooler for direct water condensation in
humid weather, Solar Energy Materials and Solar Cells, 216 (2020), 110700.
[27] M. Zhou, H. Song, X. Xu, A. Shahsafi, Y. Qu, Z. Xia, Z. Ma, M.A. Kats, J. Zhu, B.S.
Ooi, Vapor condensation with daytime radiative cooling, 118 (2021), e2019292118.
[28] A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling
below ambient air temperature under direct sunlight, Nature, 515 (2014), 540-544.
[29] D. Han, B.F. Ng, M.P. Wan, Preliminary study of passive radiative cooling under
Singapore's tropical climate, Solar Energy Materials and Solar Cells, 206 (2020), 110270.
[30] J.P. Bijarniya, J. Sarkar, P. Maiti, Review on passive daytime radiative cooling:
Fundamentals, recent researches, challenges and opportunities, Renewable and Sustainable
Energy Reviews, 133 (2020), 110263.
[31] F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of heat and
mass transfer, Wiley New York1996.
[32] D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, R. Yang, Radiative sky cooling:
Fundamental principles, materials, and applications, Applied Physics Reviews, 6 (2019),
021306.
[33] X. Yin, R. Yang, G. Tan, S. Fan, Terrestrial radiative cooling: Using the cold universe
92
as a renewable and sustainable energy source, Science, 370 (2020), 786-791.
[34] E. Lushiku, A. Hjortsberg, C. Granqvist, Radiative cooling with selectively infrared‐
emitting ammonia gas, Journal of Applied Physics, 53 (1982), 5526-5530.
[35] M.M. Hossain, M. Gu, Radiative cooling: principles, progress, and potentials,
Advanced Science, 3 (2016), 1500360.
[36] Z. Li, Q. Chen, Y. Song, B. Zhu, J. Zhu, Fundamentals, materials, and applications for
daytime radiative cooling, Advanced Materials Technologies, 5 (2020), 1901007.
[37] X. Yu, C. Chen, A simulation study for comparing the cooling performance of
different daytime radiative cooling materials, Solar Energy Materials and Solar Cells, 209
(2020), 110459.
[38] Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing
temperatures through a 24-h day–night cycle, Nature communications, 7 (2016), 1-5.
[39] H. Bao, C. Yan, B. Wang, X. Fang, C. Zhao, X. Ruan, Double-layer nanoparticlebased coatings for efficient terrestrial radiative cooling, Solar Energy Materials and Solar
Cells, 168 (2017), 78-84.
[40] Z. Cheng, Y. Shuai, D. Gong, F. Wang, H. Liang, G. Li, Optical properties and cooling
performance analyses of single-layer radiative cooling coating with mixture of TiO2
particles and SiO2 particles, Science China Technological Sciences, 64 (2021), 1017-1029.
[41] A. Berk, G.P. Anderson, P.K. Acharya, L.S. Bernstein, L. Muratov, J. Lee, M. Fox,
S.M. Adler-Golden, J.H. Chetwynd Jr, M.L. Hoke, MODTRAN5: 2006 update,
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery
XII, SPIE, 2006, pp. 508-515.
[42] R. Siegel, J.R. Howell, Thermal radiation heat transfer, Hemisphere Pub, Corp.,
Washing ton DC, (1992).
[43] J.S. Trefil, The nature of science: An AZ guide to the laws and principles governing
our universe. , Houghton Mifflin Harcourt2003.
[44] B. Zhao, M. Hu, X. Ao, N. Chen, G. Pei, Radiative cooling: A review of
fundamentals, materials, applications, and prospects, Applied Energy, 236 (2019), 489-513.
[45] S.Y. Jeong, C.Y. Tso, J. Ha, Y.M. Wong, C.Y. Chao, B. Huang, H. Qiu, Field
investigation of a photonic multi-layered TiO2 passive radiative cooler in sub-tropical
climate, Renewable Energy, 146 (2020), 44-55.
[46] S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, G. Troise, The radiative
cooling of selective surfaces, Solar Energy, 17 (1975), 83-89.
[47] C. Granqvist, A. Hjortsberg, Radiative cooling to low temperatures: General
considerations and application to selectively emitting SiO films, Applied physics letters, 52
(1981), 4205-4220.
[48] A. Harrison, M. Walton, Radiative cooling of TiO2 white paint, Solar Energy, 20
93
(1978), 185-188.
[49] A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S.J.N. Fan, Passive radiative cooling
below ambient air temperature under direct sunlight, 515 (2014), 540-544.
[50] M.A. Kecebas, Menguc, M. P., Kosar, A., & Sendur, K., Passive radiative cooling
design with broadband optical thin-film filters, Journal of Quantitative Spectroscopy and
Radiative Transfer, 198 (2017), 179-186.
[51] J.L. Kou, Jurado, Z., Chen, Z., Fan, S., & Minnich, A. J., Daytime radiative cooling
using near-black infrared emitters, Acs Photonics, 4 (2017), 626-630.
[52] D. Chae, M. Kim, P.-H. Jung, S. Son, J. Seo, Y. Liu, B.J. Lee, H.J.A.a.m. Lee,
interfaces, Spectrally selective inorganic-based multilayer emitter for daytime radiative
cooling, ACS applied materials & interfaces, 12 (2020), 8073-8081.
[53] U. Banik, Agrawal, A., Meddeb, H., Sergeev, O., Reininghaus, N., Götz-Köhler, M., ...
& Agert, C., Efficient thin polymer coating as a selective thermal emitter for passive
daytime radiative cooling, ACS Applied Materials & Interfaces., (2021).
[54] Y. Tian, H. Shao, X. Liu, F. Chen, Y. Li, C. Tang, Y. Zheng, Superhydrophobic and
recyclable cellulose-fiber-based composites for high-efficiency passive radiative cooling,
ACS Applied Materials & Interfaces, 13 (2021), 22521-22530.
[55] Z. Huang, & Ruan, X., Nanoparticle embedded double-layer coating for daytime
radiative cooling, International journal of heat and mass transfer, 104 (2017), 890-896.
[56] Y. Liu, Son, S., Chae, D., Jung, P. H., & Lee, H. , Acrylic membrane doped with Al2O3
nanoparticle resonators for zero-energy consuming radiative cooling, Solar Energy
Materials and Solar Cells, 213 (2020), 110561.
[57] C. Ziming, W. Fuqiang, G. Dayang, L. Huaxu, S. Yong, Low-cost radiative cooling
blade coating with ultrahigh visible light transmittance and emission within an
“atmospheric window”, Solar Energy Materials and Solar Cells, 213 (2020), 110563.
[58] X. Li, J. Peoples, P. Yao, X. Ruan, Ultrawhite BaSO4 paints and films for remarkable
daytime subambient radiative cooling., ACS Applied Materials & Interfaces, 13 (2021),
21733-21739.
[59] C.R. Helms, E.H. Poindexter, The silicon-silicon dioxide system: Its microstructure
and imperfections, Reports on Progress in Physics, 57 (1994), 791.
[60] H.R. Philipp, Silicon dioxide (SiO2) (Glass), in: E.D. Palik (Ed.) Handbook of Optical
Constants of Solids, Academic Press, Burlington, 1997, pp. 749-763.
[61] Z. Cheng, Wang, F., Wang, H., Liang, H., & Ma, L. , Effect of embedded polydisperse
glass microspheres on radiative cooling of a coating, International Journal of Thermal
Sciences, 140 (2019), 358-367.
[62] X. Hu, Y. Zhang, J. Zhang, H. Yang, F. Wang, F. Bin, N. Noor, Sonochemically-coated
transparent wood with ZnO: Passive radiative cooling materials for energy saving
94
applications, Renewable Energy, 193 (2022), 398-406.
[63] Y. Mastai, Y. Diamant, S.T. Aruna, A. Zaban, TiO2 nanocrystalline pigmented
polyethylene foils for radiative cooling applications: synthesis and characterization.,
Langmuir, 17 (2001), 7118-7123.
[64] Y. Qi, H. Zhao, Y. Wu, Y. Ren, Facile preparation of solar reflective cool colored
material with desired superhydrophobicity, Solar Energy Materials and Solar Cells, 242
(2022), 111761.
[65] A. Andretta, B. Bartoli, B. Coluzzi, V. Cuomo, Selective surfaces for natural cooling
devices, Le Journal de Physique Colloques, 42 (1981), C1-423-C421-430.
[66] T.M. Nilsson, G.A. Niklasson, Radiative cooling during the day: simulations and
experiments on pigmented polyethylene cover foils, Solar energy materials
solar cells, 37 (1995), 93-118.
[67] E.D. Palik, Handbook of optical constants of solids, Academic press1998.
[68] Z. Cheng, Y. Shuai, D. Gong, F. Wang, H. Liang, G. Li, Optical properties and cooling
performance analyses of single-layer radiative cooling coating with mixture of TiO2
particles and SiO2 particles, Science China Technological Sciences, 64 (2021), 1017-1029.
[69] L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, S. Tanemura, Preparation
and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron
sputtering, Applied Surface Science, 212-213 (2003), 255-263.
[70] J. Peoples, X. Li, Y. Lv, J. Qiu, Z. Huang, X. Ruan, A strategy of hierarchical particle
sizes in nanoparticle composite for enhancing solar reflection, International Journal of Heat
and Mass Transfer, 131 (2019), 487-494.
[71] 施劭儒、游進陽, 輻射冷卻厚膜材料開發, 產學計畫, 國立台灣科技大學,
(2019).
[72] 陳品璇, 二氧化矽-聚甲基丙烯酸甲酯塗層的製備與性質分析於輻射冷卻之應用,
碩士論文, 台科大, (2021).
[73] L. Baraket, A. Ghorbel, Control preparation of aluminium chromium mixed oxides by
Sol-Gel process, in: B. Delmon, P.A. Jacobs, R. Maggi, J.A. Martens, P. Grange, G.
Poncelet (Eds.) Studies in Surface Science and Catalysis, Elsevier1998, pp. 657-667.
[74] E. Yilmaz, M. Soylak, 15 - Functionalized nanomaterials for sample preparation
methods, in: C. Mustansar Hussain (Ed.) Handbook of Nanomaterials in Analytical
Chemistry, Elsevier2020, pp. 375-413.
[75] D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I.H. Shewael,
G.H. Valiev, E. Kianfar, Nanomaterial by Sol-Gel Method: Synthesis and Application,
Advances in Materials Science and Engineering, 2021 (2021), 5102014.
[76] D. Santos, A.C. Maurício, V. Sencadas, J.D. Santos, M.H. Fernandes, P.S. Gomes,
Spray drying: an overview, Biomaterials-Physics
95
Chemistry-New Edition, (2018), 9-35.
[77] T. Peng, X. Zhang, Y. Huang, Z. Zhao, Q. Liao, J. Xu, Z. Huang, J. Zhang, C.-y. Wu,
X. Pan, C. Wu, Nanoporous mannitol carrier prepared by non-organic solvent spray drying
technique to enhance the aerosolization performance for dry powder inhalation, Scientific
Reports, 7 (2017), 46517.
[78] N. Ugemuge, Y.R. Parauha, S.J. Dhoble, Chapter 15 - Synthesis and luminescence
study of silicate-based phosphors for energy-saving light-emitting diodes, in: S.J. Dhoble,
N.T. Kalyani, B. Vengadaesvaran, A. Kariem Arof (Eds.) Energy Materials, Elsevier2021,
pp. 445-480.
[79] F.-Y. Zhu, Q.-Q. Wang, X.-S. Zhang, W. Hu, X. Zhao, H.-X.J.N. Zhang, 3D
nanostructure reconstruction based on the SEM imaging principle, and applications, 25
(2014), 185705.
[80] K. Akhtar, S.A. Khan, S.B. Khan, A.M. Asiri, Scanning electron microscopy: principle
and applications in nanomaterials characterization, Handbook of materials
characterization, Springer2018, pp. 113-145.
[81] A. Beganskienė, V. Sirutkaitis, M. Kurtinaitienė, R. Juškėnas, A.J.M.S. Kareiva, FTIR,
TEM and NMR investigations of Stöber silica nanoparticles, 10 (2004), 287-290.
[82] S.C. Feifel, F. Lisdat, Silica nanoparticles for the layer-by-layer assembly of fully
electro-active cytochrome c multilayers, Journal of Nanobiotechnology, 9 (2011), 59.
[83] S. Ramesh, K.H. Leen, K. Kumutha, A.K. Arof, FTIR studies of PVC/PMMA blend
based polymer electrolytes, Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy, 66 (2007), 1237-1242.
[84] R. Gonzalez, R. Zallen, H. Berger, Infrared reflectivity and lattice fundamentals in
anatase TiO2, Physical Review B, 55 (1997), 7014.
[85] T. Sekiya, M. Igarashi, S. Kurita, S. Takekawa, M. Fujisawa, Structure dependence of
reflection spectra of TiO2 single crystals, Journal of Electron Spectroscopy and Related
Phenomena, 92 (1998), 247-250.

無法下載圖示 全文公開日期 2024/08/11 (校內網路)
全文公開日期 2024/08/11 (校外網路)
全文公開日期 2024/08/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE