簡易檢索 / 詳目顯示

研究生: 彭達仁
Dar-Jen Pen
論文名稱: 分子動力學模擬奈米銅線單軸受力狀態 之微觀行為分析
Microbehavior Analysis of Cu Nanowires under uniaxial loading by Molecular Dynamics Simulation (MD)
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 蘇侃
Hon So
林仁輝
Jen-Fin Lin
邱源成
Yuang-Cherng Chiou
李榮宗
Rong-Tsong Lee
向四海
Su-Hai Hsiang
雷添壽
Tien-Shou Lei
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 240
中文關鍵詞: 奈米線分子動力學機械行為單軸受力應變率效應
外文關鍵詞: Nanowire, Mechanical behavior, Strain rate effect, Molecular dynamics, Uniaxial loading
相關次數: 點閱:246下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是以分子動力學(Molecular dynamics)探討銅奈米線的機械性質與原子尺度下的變形行為,所探討的參數包括外加負荷的條件(拉伸、壓縮)、應變率、方向性效應。本文提出最大區域應力的計算方法(Maximum local stress calculated method, MLS),以正確地的描述奈米線受外力作用時的真應力的變化,改善Virial stress(VS)方法在塑變過程中容易低估奈米線流動應力的問題。此外,本文提出降伏響應最小時間的概念,以解釋提升應變率造成降伏應力上升的問題,並且結合彈性響應時間及劈裂破壞完成時間用以解釋高應變率(10^9s^-1以上)的動態的變形行為及破壞模式。此外,更提出滑動因子(slipping factor)以評估不同方向的降伏應力對應變率的敏感度。針對不同方向性的臨界剪應力變動情形,在拉伸時,可利用表面晶格扭曲效應解釋,而在壓縮時則可利用本文所提出之lattice geometrical factor進行評估。
    模擬結果顯示,在較低應變率範圍中(7*10^7~7*10^9s^-1),slipping factor及lattice geometircal factor能夠合理解釋不同條件下銅奈線之各種行為表現。而應變率效應在不同方向性奈米線的條件下會有不同的塑性變形機制,在低應變率(7*10^7s^-1)時,對於降伏應力的應變率敏感度較低的施力與方向組合條件下(<100>拉伸與壓縮及<110>拉伸),較易形成摺疊狀的部分差排分布;而當應變率提高至7*10^8s^-1,<100>與<110>奈米線都會有雙晶變形產生,同時此雙晶變形所造成的晶格轉向會因為不同的施力與方向性條件,而形成幾何強化或幾何軟化的現象,因而造成這兩個方向的變形行為類似反對稱的關係。但是,<111>奈米線由於剛性邊界及表面的限制條件下,雙晶變形不易被啟動。當應變提高至7*10^9s^-1,對於降伏應力的應變率敏感度越高的條件(<100>及<111>的拉伸、<111>與<110>的壓縮),則較易出現多個部分差排同時啟動的塑變行為。而在應變率條件為7*10^7~7*10^9s^-1時,在奈米線最後破斷前,由於頸縮區已失去FCC晶格結構,無法再利用差排剪滑移塑變,所以原子間鍵結的直接拉斷是主要的破壞模式,因此會造成MLS應力急遽上升的現象。
    在高拉伸速率(51~3000m/s)範圍中,本文模擬結果驗証te及tc 預測模式的正確性,當拉伸速率為51~800m/s間,由於彈性響應的時間效應造成應力累積在奈米線兩端,並在te期間應力增至最大值,所累積的應力隨後傳入奈米線中;在拉伸速率超過1000m/s,拉伸張應力就會趨近其劈裂應力值,並造成劈裂破壞,且tc必小於te ;而在拉伸速率為800~1000m/s的過渡範圍,在奈米線端面與剛性邊界產生劈裂破壞過程中,由於奈米線端面少數原子產生滑動,會形成不平整的劈裂斷面。而其中在額定應變率範圍(2.2*10^10s^-1~7*10^10s^-1-拉伸速率166~512m/s),在後續的動態變形行為中,此被累積的彈性應力對於不同的施力與方向之組合條件則會有不同的發展,對於slipping factor較小的條件下(<100>拉伸、<111>拉伸與壓縮、<110>壓縮),會出現動態的應力波傳遞情形,並在奈米線中間形成建設性干涉現象,形成MLS應力的第二應力高峰現象;反之,彈性應力波在傳入奈米線中間區域前即被接近奈米線兩端的大量塑變所釋放。而其中,較特別的是在<100>奈米線壓縮條件下,會啟動相轉換變形而形成HCP結構。同時,此種相轉換具有過渡的動態塑性波傳的特性。


    This study analyzes mechanical properties and deformation behaviors of Cu nanowires with uniaxl loading states (tension and compression), different strain rates and orientations by molecular dynamics. In this work, the maximum local stress calculated method (MLS) is proposed to validly elucidate the true stress of nanowires under uniaxial loading, in order to improve the problem that that the Virial stress(VS) is easy to undervalue the flow stress during plastic deformation. In addition, the concept of the minimum response time for yielding is proposed to explain the problem that the promotion of strain rate increases the yield stress. The combination of the elastic response time and the required time for cleavage fracture are presented to elucidate the dynamic deformation behavior as the strain rate is above . Moreover, the slipping factor is proposed to evaluate the strain rate sensitivity of yield stress. Further, the effect of lattice distortion and lattice geometrical factor can be used to explain the difference in between the different orientations under tension and compression, respectively.
    Analysis results demonstrate that slipping factor and lattice geometrical factor can be used to reasonably predict the various behaviors of Cu nanowire with different condition at the strain rate(7*10^7~7*10^9s^-1). The analysis also studies the variation of deformation mechanisms for various orientations and strain rates. At the strain rate of 7*10^7s^-1, the zigzag distribution of partial dislocations is observed in the nanowires of the lower the strain rate sensitivity of yield stress. When the strain rate is 7*10^8s^-1 , twinning occurs in both <100> nanowires and <110>. The variations of lattice orientation caused by twinning can result in geometrical hardening or geometrical softening with distinct loading conditions and orientations. Therefore, the deformation mechanism of two orientations (<100> and <110>) is pseudo skew-symmetry of nanowires under tension and compression. However, twinning is not easy to be operated because of the restriction of rigid body layers and free surface. When the strain rate is 7*10^9s^-1 , many partial dislocations are operated simultaneously for the conditions of higher strain rate sensitivity of yield stress(<100>tension, <111>tension /compression, <110>compression). At the strain rate between 7*10^7s^-1 and 7*10^9s^-1, immediately before fracture, the crystal structure in necking zone loses FCC, so the dislocation slip can not be operated. Therefore, the primary failure mode becomes atomic bond breakage, causing that the MLS stress increases markedly. The simulation results verify the prediction of te and tc, as the pulling speed ranges from 51 to 3000 m/s. When the pulling speed is 51~800m/s, the effect of causes the accumulation of the stress that is applied at the beginning of tensile loading in . The stress rises to the maximum at , and then the stress accumulated in the both ends of nanowires propagate forward the middle of nanowires. As the pulling speed is above 1000m/s, the fracture mode of nanowire is the cleavage fracture and the fracture surface is flat. The maximum tensile stress can be considered as cleavage stress. In this case, tc is definitely smaller than te . When the pulling speed ranges from 800 to 1000m/s, the fracture mode of nanowire is still the cleavage fracture. However, the fracture surface is not flat, because a few atoms in both ends of nanowires slip during cleavage fracture.
    For the specific strain rate 2.2*10^10s^-1~7*10^10s^-1 (pulling speed 166~512m/s), the stress accumulated in the both ends of nanowires have distinct influnences on dynamic behaviors in different orientation nanowires during the following deformation. For the conditions of the smaller slipping factor (<100>tension, <111>tension/compression, and <110> compression), the propagation of stress waves are obviously observed. The encounter of the stress wave causes constructive interference in the middle of the nanowires, producing the second peak. However, for the conditions whose the slipping factor is larger (<110>tension), stress wave are released by the large plastic deformation in both ends of nanowires before the stress waves propagate forward the middle of nanowires. Interestingly, the phase transformation mechanism that the FCC can be transformed into HCP is observed when the <100> nanowires is under compression. Further, this phase transformation mechanism expresses the characteristic of transitional plastic wave propagation.

    目 錄 摘 要 I Abstract III 誌 謝 VI 目 錄 VII 符號說明 XI 表索引 XVIII 圖索引 XIX 第一章 緒論 1 1-1 研究動機與目的 1 1-2 模式構想簡介 3 1-2-1 最小降伏時間模式( ) 3 1-2-2 彈性響應時間模式( ) 4 第二章 文獻回顧 6 2-1 分子動力學文獻回顧 6 2-2 奈米金屬線製造及機械性質實驗之文獻探討 7 2-3 分子動力學應於奈米金屬線之文獻探討 9 第三章 分子動力學基礎理論 22 3-1 分子間作用力與勢能函數 22 3-2 截斷半徑法與Verle表列法 24 3-4 運動方程式及演算法 25 3-5 原子級應力計算方法 28 3-6 Centrosymmetry parameter (CSP) 30 3-7 溫度場的評估 31 第四章 降伏最小響應時間、彈性響應時間模式 34 4-1 降伏最小響應時間 34 4-2 高應變率效應所引發的應力累積模式及劈裂破壞………...41 第五章 模擬步驟與奈米線模型的建立 46 5-1 模擬步驟 46 5-1-1 前處理(initialization) 46 5-1-1-1 預備(preliminaries) 46 1.勢能函數之選取 46 2.無因次化及系統之邊界條件 47 5-1-1-2 初始條件(initial condition) 48 1.初始位置 48 2.初始速度 48 5-1-2 平衡(equilibration) 49 5-1-3 動態模擬(production) 50 5-2 平衡後的奈米線模型及施力模式 50 5-3 電腦運算設備 51 第六章 結果與討論 53 6-1 預應力現象的探討(pre-stress phenomenon) 53 6-2 應變率為 之銅奈米線拉伸及壓縮行為分析 55 6-2-1 MLS應力曲線與VS應力曲線的差異 55 6-2-2 應變率及方向性對降伏應力的影響 57 6-2-3 應變率效應及施力條件對彈性係數的影響 59 6-2-4 降伏機制與流動應力的變動情形分析 60 6-2-4-1 <100>奈米線 60 1.拉伸行為分析 60 2.壓縮行為分析 65 6-2-4-2 <110>奈米線 67 1.拉伸行為分析 67 2.壓縮行為分析 69 6-2-4-3 <111>奈米線 72 1.拉伸行為分析 72 2.壓縮行為分析 75 6-2-4-4 各方向對應變速率敏感性分析 77 1.應變速率對不同方向奈米線塑變機制影響之綜合比較 77 2.奈米線破斷前的5-1-5奈米架橋結構分析 79 6-2-4-5 尺寸與應變率對降伏應力之綜合效應 81 1.方向性效應對臨界分解剪應力的影響 81 2.尺寸效應 84 3.尺寸與應變率的綜合效應 84 6-3 應變率條件 之銅奈米線拉伸及壓縮行為分析 85 6-3-1 MLS應力曲線與VS應力曲線的差異 85 6-3-2 高拉伸速率下的彈性響應現象與劈裂破壞現象 86 6-3-3 降伏機制與流動應力的變動分析 89 6-3-3-1 <100>奈米線 89 1.拉伸行為分析 89 2.壓縮行為分析 94 6-3-3-2 <110>奈米線 99 1.拉伸行為分析 99 2.壓縮行為分析 100 6-3-3-3 <111>奈米線 102 1.拉伸行為分析 102 2.壓縮行為分析 103 6-3-3-4 各方向對應變速率敏感性分析 104 第七章 結論與建議 107 7-1 結論 107 7-2 未來研究方向與建議 109 參考文獻 110

    1.張立德、牟季美,奈米材料和奈米結構,第1~5頁,台中,滄海書局,民國九十一年。
    2. Feynman, R., “Infinitesimal machinery,” Journal of Miroelectromechanical Systems, Vol.2, No.1, pp.4-14(1993).
    3.Binnig, G., Rohrer, H., Gerber, Ch. and Weibel, E., “Surface Studies by Scanning Tunneling Microscopy”, Vol.49, pp.57-61(1982).
    4.Binnig, G. and Rohrer, H. “Scanning tunneling microscopy,” Surface Science, Vol.126, pp.236-244(1983).
    5.Binnig, G., Quate, C. F. and Gerber. Ch. “Atomic force microscope,” Physical Review Letter, Vol.56, pp.930-933(1986).
    6.張立德,奈米材料,第5~7頁,台北,五南書局,民國九十一年。
    7.Craighead, H. G., “Nanoelectromechanical systems,” Science, Vol.290, pp.1532-1535(2000).
    8.Lieber, C. M., “Nanoscale science and technology: building a big future from small things, ” MRS Bull., Vol.28, pp.486-491(2003).
    9.Patolsky, F., Zheng, G and Lieber, C. M., ”Nanowire sensor for medicine and the life science,” Nanomidicine, Vol.1, pp.51-65(2006).
    10. Kondo, Y. and Takayanagi, K., “Gold nanobridge stabilized by surface structure,” Physical Review Letters, Vol.79, pp.3455-3458(1997).
    11.Kondo, Y. and Takayanagi, K., “Thickness induced structural phase transition of gold nanfilm,” Physical Review B, Vol.82, pp.751-754(1999).
    12.Kondo, Y. and Takayanagi, K., “Synthesis and characterization of helical multi-shell gold nanowires,” Science, Vol.289, pp.606-608(2000).
    13.Kizuka, T., “Atomistic visualization of deformation in gold,” Physical Review B, Vol.57, pp.11158-11163(1998).
    14.Rodrigues, V., Fuhrer, T., and Ugarte, D., “Signature of atomic structure in the quantum conductance of gold nanowires,” Physical Review Letters, Vol.85, pp.4124-4127(2000).
    15.Shik, A., Ruda, H. E., and Currie, I. G.,“Electromechanical and electro-optical properties of nanowires,” Journal of Applied Physics, Vol.98, pp.094306(2005).
    16.Wu, B., Heidelberg, A. and Boland, J. J., “Mechanical properties of ultrahigh-strength gold nanowires,” Nature Materials, Vol.4, pp.525-529(2005).
    17.Heidelberg, A., Ngo, L. T., Wu, B., Phillips, M. A., Sharma, S., Kamins, T. I., Sader, J. E., and Boland, J. J., “A generalized description of the elastic properties of nanowires,” Nano Letters, Vol.6, pp.1101-1106(2006).
    18.Frenkel, D. and Smit, B., Understanding molecular simulation: from algorithms to applications, Academic Press, New York,(1996).
    19.G&uuml;lseren, O., Ercolessi, F. and Tosatti, E., “Noncrystalline structures of ultrathin unsupported nanowires,” Physical Review Letters, Vol.80, pp.3775-3778 (1998).
    20.Sen, P., G&uuml;lseren, O., Yildirim, T., Batra, I. P. and Ciraci, S., “Pentagonal nanowires: A first-principles study of the atomic and electronic structure,” Physical Review B, Vol.65, pp.235433(2002).
    21.Wang, B., Yin, S., Wang, G., Buldum, A. and Zhao, J., “Novel structures and properties of gold nanowires,” Physical Review Letters, Vol.86, pp.2046-2049 (2001).
    22.Kang, J. W. and Hwang, H. J., “An atomistic simulation study of cylindrical ultrathin Cu nanowires,” Molecular Simulation, Vol.28, pp.1021-1030(2002).
    23.Diao, J., Gall, K. and Dunn, M. L., “Surface-stresss-induced phase transformation” in metal nanowires,” Nature Materials, Vol.2, pp.656-660(2003).
    24.Liang, W and Zhou, M., “Shape memory effect in Cu nanowires,” Nano Letters, Vol.5, No.10, pp.2039-2043(2005).
    25.Liang, W and Zhou, M., “Pseudoelasticity of single crystalline Cu nanowires through reverible lattice reorientations,” Jounal of Engineering Materials and Technology, Vol.127, pp.423-433(2005).
    26.Liang, W and Zhou, M., “Atomistic simulations reveal shape memory of fcc metal nanowires,” Physical Review B,Vol.73, pp.115409(2006).
    27.Park, H. S. and Ji, C., “Shape memory and pseudoelasticity in metal nanowires,” Physical Review Letters, Vol.95, pp.255504(2005).
    28.Park, H. S. and Ji, C., “On the thermomechanical deformation of silver shape memory nanowires,”Acta Materialia, Vol.54, pp.2645-2654 (2006).
    29.Mehrez, H. and Ciraci, S., “Yielding and fracture mechanisms of nanowires,” Physical Review B, Vol.56, pp.12632-12642(1997).
    30.Komanduri, R., Chandrasekaran, N., and Raff, L. M., “Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal Cubic metals at nanolevel,” International Journal of Mechanical Sciences, Vol.43, pp.2237-2260(2001).

    31.Silva, E. Z. d., Silva, A. J. R. d. and Fazzio, A., “How do gold nanowires break?,” Physical Review Letters, Vol.87, pp.256102 (2001).
    32.Kang, J. W. and Hwang, H. J., “Mechanical deformation study of copper nanowires using atomistic simulation,” Nanotechnology, Vol.12, pp.295-300(2001).
    33.Gonz&aacute;lez, J. C., Rodrigues, V., Bettini, J., Rego, L. G. C. , Rocha, A. R., Coura, P. Z., Dantas, S. O., Sato, F., Galv&atilde;o, D. S., and Ugarte, D., “Indication of unusual pentagonal structures in atomic-size Cu nanowires,” Physical Review Letters, Vol.93, pp.126103(2004).
    34.Wang, B., Shi, D., Jia, J., Wang, G., Chen, X. and Zhao, J., “Elastic and plastic deformations of nickel nanowires under unaxial compress,” Physica E, Vol.30, pp.45-50(2005).
    35.Sato, F., Moreira, A. S., Bettini, J. Coura, P. Z., Dantas, S. O., Ugarte, D. and Galv&atilde;o, D. S., “ Transmission electron microscopy and molecular dynamics study of the formation of suspended copper linear atomic chains,” Physical Review B, Vol.74, pp.193401(2006).
    36.Park. H. S. and Zimmerman, J. A., “Modeling inelasticity and failure in gold nanowires,” Physical Review B, Vol.72, pp.054106(2005).
    37.Park. H. S. and Zimmerman, J. A., “Stable nanobridge formation in <110> gold nanowires under tensile deformation,” Scripta Materialia, Vol.54, pp.1127-1132(2006).
    38.Amorim, E. P. M., Silva, A. J. R. d., Fazzio, A. and Silva. E. Z. d., “Short linear atomic chains in copper nanowires,” Nanotechnology, Vol.18, pp.145701(2007).
    39.Ikeda, H., Qi, Y., Cagin, T., Samwer, K., Johnson, W. L. and Goddard Ⅲ, W. A., “Strain rate induced amorphization in metallic nanowires,” Physical Review Letters, Vol.82, pp.2900-2903(1999).
    40.Bran&iacute;cio, P. S. and Rino, J. P., “Large deformation and amorphization of Ni nanowires under uniaxial strain: a molecular dynamics study,” Physical Review B, Vol.62, 16950-16955(2000).
    41.Wu, H. A., Soh, A. K., Wang, X. X. and Sun, Z. H., “Strength and fracture of single crystal metal nanowire,” Key Engineering Materials, Vol.261-263, pp.33-38(2004).
    42.Wu, H. A., “Molecular dynamics study of the mechanics of metal nanowires at finite temperature,” European Journal of Mechanics A/Solids, Vol.25, pp.370-377(2006).
    43.Wu, H. A., “Molecular dynamics study on mechanics of metal nanowire,” Mechanics Research Communications, Vol.33, pp.9-16(2006).
    44.Koh, S. J. A. and Lee, H. P.,“Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects,”Physical Review B, Vol.72, pp.085414 (2005).
    45.Liang, W. and Zhou, M., “Response of copper nanowires in dynamic tensile deformation,” Journal of Mechanical Engineering Science, Vol.218, pp.599-606(2004).
    46.Wen, Y. H., Zhu, Z. Z. and Zhu, R. Z., “Molecular dynamics study of the mechanical behavior of nickel nanowire: strain rate effects,” Computation Materials Science, Vol.41, pp.553-560(2008).
    47.Lin, Z. C. and Hung, J. C., “A study on a rigid body boundary layer interface force model for stress calculation and stress–strain behaviour of nanoscale uniaxial tension” Nanotechnology, Vol.15, pp.1509-1518(2004).
    48.Wang, D., Zhou, J., Hu, S., Yin, X., Liang, S. and Deng, S., “Where, and how, does a nanowire break?,” Nano Letters, Vol.7, pp1208-1212(2007).
    49.Clausius, R., “On a mechanical theory applicable to heat,” Philosophical Magazine, Series VI, Vol.40, pp.122-127(1870).
    50.Koh, S. J. A. and Lee, H. P., “Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires” Nanotechnology, Vol.17, pp.3451-67(2006).
    51.Koh, S. J. A. and Lee, H. P., “Shock-Induced Localized Amorphization in Metallic Nanorods with Strain-Rate-Dependent Characteristics,” Nano Letters, Vol.12, pp.2260-72006(2006).
    52.Diao, J., Gall, K. and Dunn, M. L., “Yield strength asymmmetry in metal nanowires,” Nano Letters, Vol.4, pp.1863-1867(2004).
    53.Diao, J., Gall, K. and Dunn, M. L., Zimmerman, J. A., “Atomistic simulations of the yielding of gold nanowires,” Acta Materialia Vol.54, pp.643-653(2006).
    54.Karaman, I., Sehitoglu, H., Gall, K., Chumlyakov, Y. I. and Maier, H. J., “Deformation of single crystal hadfield steel by twinning and slip,” Acta Materialia, Vol.48, pp.1345-1359(2000).
    55.Park, H. S., Gall K., Zimmerman J. A., “Deformation of FCC nanowires by twinining and slip,” Journal of the mechanics and physics of solds, Vol.54, pp.1862-1881(2006).
    56.Ji, C. and Park, H. S., “The coupled effects of geometry and surface orientation on the mechanical properties of metal nanowires,” Nanotechnology, Vol.18, pp. 305704(2007).
    57.Ji, C. and Park, H. S., “Characterizing the elasticity of hollow metal nanowires,” Nanotechnology, Vol.18, pp.115707(2007).
    58.Ji, C. and Park, H. S., “Geometric effects on the inelastic deformation of metal nanowires,” Applied Physics Letters, Vol.89, pp.181916(2006).
    59.Chen, D. L. and Chen, T. C., “Mechanical properties of Au nanowires under uniaxial tension with high strain-rate by molecular dynamics,” Nanotechnology, Vol.16, pp.2972-2981(2005).
    60.McEntire, R. S. and Shen, Y. L. “An atomistic analysis of incipient metal plasticity during tensile loading” Molecular Simulation, Vol.32, pp.857-867(2006).
    61.張嘉哲,單軸拉伸含三維缺陷之銅奈米線機械行為研究,國立台灣科技大學碩士論文,2007。
    62.Irving, J. H. and Kirkwood, J. G. “The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics” Journal of chemical Physics, Vol.18, pp.817-829(1950).
    63.Alder, B. J. and Wainwright, T. E., “Phase Transition for a Hard Sphere System,” Journal of chemical Physics, Vol.27, pp.1208-1209(1957).
    64.Metropolis. N., Rosenbluth., A. W., Rosenbluth, M. N., Teller, A. N. and Teller. E., “Equation of state calculations by fast computing machines,” Journal of chemical Physics, Vol.21, No.6, pp.1087-1092(1953).
    65.Haile, J. M., Molecular dynamics simulation: elementrary methods (A Wiley-interscience publication), John Wiley & Sons, Inc. the United States of American (1992).
    66.Verlet, L., “Computer “Experiment” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Physical Reivew, Vol.159, No.1, pp.98-103(1967).
    67.Quentrec, B. and Brot, C., “New method for neighbors in molecular dynamics computations,” Journal of Computational Physics, Vol.13, pp.430-432(1973).
    68.Plimpton, S. “Fast prarllel algorithm for short-range molecular dynamics”, Journal of Computational Physics, Vol. 117, pp.1-19(1995).
    69.Komanduri, R., Chandrasekaran, N. and Raff, L. M., ”Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach,” Wear, Vol.219, pp.84-97(1998).
    70.Komanduri, R., Chandrasekaran, N. and Raff, L. M., ”Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting,” Wear, Vol.242, pp60-68(2000).
    71.Komanduri, R., Chandrasekaran, N. and Raff, L. M., ”Simulation of indentation and scratching of single crystal aluminum“, Wear, Vol.240, pp.113-143(2000).
    72.Gannepalli, A. and Mallapragada S. K., “Atomistic studies of defect nucleation during nanoindenatation of Au(001),” Physical Review B, Vol.66, pp.1041031-1041039(2002).
    73.Liang, H. Y., Woo, C. H., Hung, H., Ngan, A. H. W., and Yu, T. X., “Dislocation nucleation in the initial stage during Nanoindentation,” Philosophical Magazine, Vol.83, pp.3609-3622(2003).
    74.Lilleodden, E. T., Zimmerman, J. A., Foiles, S. M., and Nix W. D., “Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation,” Journal of the Mechanics and Physics of Solids, Vol.51, pp.901-920(2003).
    75.Feichtinger, D. Derlet, P. M., and Swygenhoven, H. V., “Atomistic simulations of spherical indentations in nanocrystalline gold,” Physical Review B, Vol.67, pp.024113(2003).
    76.Fang, T. H., Weng, C. I., and Chang, J. G., “Molecular dynamics analysis of temperature effects on nanoindentation measurement,” Materials Science and Engineering A, Vol.357, pp.7-12(2003).

    77.Fang, T. H., Jian, S. R., and Chuu, D. S., “Molecular dynamics analysis of effects of velocity and loading on the nanoindentation” Japanese Journal of Applied Physics, Vol.41, pp.L1328-L1331(2002).
    78.Abrahamf, F.F., Schneider D., Land, B., Lifka, D., Skovira, J., Gerner, J. and Rosenkrantz. M., “Instabiliy dynamics in three-dimensional fracture: An atomistic simulation,” Journal of the Mechanics and Physics of Solids, Vol.45, pp.1461-1471(1997).
    79.Smith, W. F., Foundation of materials science and engineering(2end en), McGraw-Hill, New York,(1994).
    80.Dieter, G. E., Mechanical metallurgy, McGraw-Hill, London,(1988).
    81.Kelly, A. and Macmillan, N. H., Strong solids(3rd ed.), Clarendon Press, pp.Oxford(1986).
    82.Yoshida, K, Gotoh,Y. and Yamamoto, M., “The thickness dependence of plastic behaviors of copper whiskers,” Journal of the Physical Society of Japan, Vol.24, pp.1099-1107(1968).
    83.Daw, M. S., Foiles, S. M. and Baskes, M. I., “The Embedded-atom method: a review of theory and applications,” Materials Science Reports, Vol.9, pp.251-310(1993).
    84.Daw, S. M. and Baskes, M. I., “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Physical Review Letters., Vol.50, pp.1285-1288(1983).
    85.Rosato, V., Guillope, M. and Legrand, B., “Thermodynamical and structural properties of FCC transition metals using a simple tight-binding model,” Philosophical Magazine A, Vol.59, pp.321-336(1989).
    86.Cleri, F. and Rosato, V., “Tight-binding potentials for transition metals and alloys,” Physical Review B, Vol.48, pp. 22-23(1993).
    87.Finnis, M. W. and Sinclair, J. E., “A simple empirical n-body potentials for transition metals”. Philosophical Magazine A, Vol.50, pp.45-55(1984).
    88.Tersoff. J, “New empirical model for the structural properties of silicon,” Physical Review Letters, Vol.56, pp.632-635(1986).
    89.Daw, M. S. and Baskes, M. L., “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Physical Review B, Vol.29, pp.6443-6453(1984).
    90.Daw, M. S., “Model of metallic cohesion: The embedded-atom method,” Physical Review B, Vol.39, pp.7441-7452(1989).
    91.Johnson, R. A., “Analytic Nearest-Neighbor Model for FCC Metals,” Physical Review B, Vol.37, No.8, pp.3924-3931(1988).
    92.Voter, A. F., Intermetallic compouds: Priciples, Vol.1, Wiley, New York, pp.77-90(1994).
    93.Mishin Y., Farkas , Mehl, M. J. and Papaconstantopoulos, “Interatomic potentials for monoatomic metals from experimental data and ab initio calculations”, Physical Review B, Vol.59, pp.3393-3407(1999).
    94.Gear, C. W., Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs, NJ, (1971).
    95.Basinski, Z. S., Duesbery, M. S. and Taylor, R. “Influence of shear stress on screw dislocations in a model sodium lattice,” Canadian Journal of Physics, Vol.49, 2160(1971).
    96.Srolovitz, D., Maeda, K., Vitek, V. and Egami, T., “Structural defects in amorphous solids statistical analysis of a computer model,” Philosophical Magazine A., Vol.44, pp.847-866(1981).
    97.Miyazaki, N. and Shiozaki, S. “Calculation of mechanical properties of solids using molecular dynamics method,” JSME International Journal Series A, Vol.39, No.4, pp.606-612(1996).
    98.Lin, Y. C. and Pen, D. J., “Atomistic behavior analysis of Cu nanowire under uniaxial tension with maximum local stress method,” Molecular Simulation, Vol.33, pp.985-994(2007).
    99.Iwaki, T., “Molecular dynamics study on stress-strain in very thin film (size and location of region for defining stress and strain),” JSME International Journal Series A, Vol.39, No.3, pp.346-353 (1996).
    100.Kelchner, C. L., Plimpton, S. J. and Hamilton, J. C. “Dislocation nucleation and defect structure during surface indentation,” Physical Review B, Vol.58, No.17, pp.11085-11088(1998).
    101.Giancoli, D. C., Physics for scientists & engineers with modern physics (3rd edn), Prentice Hall, New Jersey, pp.466-469(2000).
    102.Zimmerman, J. A., Gao, H. and Abraham, F. F., “Generalized stacking fault energies for embedded atom FCC metals,” Modelling and Simulaion in Material Science and Engineering, Vol.8, pp.103-115(2000).
    103.Reed-Hill, R. E. and Abbaschian, R., Physical metallurgy principles, Van Nostrand, New York, (1973).
    104.Cottrell, A. H., Dislocation and plastic flow in crystals, Oxford University Press(1953).
    105.Hirth, J. P., Theory of dislocation(2nd ed.), Wiley, New York, pp.835-839(1982).
    106.Hull, D. and Bacon, D. J., Introduction to dislocations, Butterworth-Heinemann, Oxford, pp.49-51(2001).
    107.Christmann, K., Introduction to surface physical chemistry, Springr-Verlag, New York, pp.34-40(1991).
    108.Guy, A. G. and Hren, J. J., Elements of physical metallurgy (3rd ed.), Massachusetts, Addison-Wesley, pp.127(1974).
    109.Gall, K., Diao, J. and Dunn, M. L., “The strength of gold nanowires,” Nano Letters, Vol.4, pp.2431-2436(2004).

    QR CODE