簡易檢索 / 詳目顯示

研究生: 張芮榕
Jui-Jung Chang
論文名稱: 以不同成分之黏土製作石灰石煅燒黏土複合膠結砂漿之工程性質研究
Study of Engineering Properties of Limestone Calcined Clay Composite Cementitious Mortar with Clay of Different Compositions
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 張大鵬
Ta-Peng Chang
王韡蒨
Wei-Chien Wang
鄭安
An Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 119
中文關鍵詞: LC3膠結材煅燒黏土石灰石抗壓強度
外文關鍵詞: limestone calcined clay cement (LC3), calcined clay, limestone, compressive strength
相關次數: 點閱:264下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石灰石煅燒黏土複合膠結材(LC3, Limestone Calcined Clay Cement)為煅燒黏土、石灰石與水泥熟料之三元水泥基膠結材。與卜特蘭水泥相比,LC3膠結材使用較少的水泥熟料,且黏土煅燒溫度低於水泥熟料,因此能降低製成的能耗及排碳。不同來源的黏土成分各異,是否影響最後LC3的性質有待進一步探討,因此本研究利用三種不同成分之黏土製作LC3,探討最佳黏土煅燒溫度、建議之配比及成本分析。過程中,煅燒溫度為550–850℃,煅燒後製作煅燒黏土:石灰石=1:0、1:2、3:2、2:1之混合粉末,再與熟料以1:2及1:3混合再添加3%石膏,製造出LC3膠結材。試驗結果發現,三種黏土之最佳煅燒溫度為850°C,建議之配比為煅燒黏土與石灰石比例3:2、熟料取代量為25%之配比,在水灰比0.6時,三種黏土分別可獲得最高28天抗壓強度,分別達31.70、32.26及31.37 MPa,比控制組增加24.90、27.07%及23.60%,差異不大。本研究之LC3膠結材成本明顯高於卜特蘭水泥,主要來自於煅燒過程所需的電費,如果未來能大量生產並利用窯燒的方式進行煅燒,那成本可大幅下降。


    Limestone Calcined Clay Cement (LC3) is a ternary cementitious material composed of calcined clay, limestone, and cement clinker. Compared to ordinary Portland cement (OPC), LC3 uses a lower proportion of cement clinker and involves lower calcination temperatures for the clay, thereby reducing the energy consumption and carbon emissions during production. The influence of clay from different sources on the properties of LC3 requires further investigation. Hence, this study employs three clays of different compositions to produce LC3 and explores optimal calcination temperatures, recommended mixing proportions, and cost analysis.
    During the process, calcination temperatures ranging from 550 to 850°C were employed. Calcined clay and limestone were mixed in various ratios of 1:0, 1:2, 3:2, and 2:1, and then combined with clinker in ratios of 1:2 and 1:3, along with 3% gypsum, to create the LC3 material. Experimental results revealed that the optimal calcination temperature for the three clays was 850°C. The recommended mix ratio consisted of a 3:2 ratio of the calcined clay to limestone and a clinker substitution rate of 25%. When the water-to-binder ratio was 0.6, the three clays achieved their highest 28-day strengths: 31.70 MPa, 32.26 MPa, and 31.37 MPa, respectively, indicating increases of 24.90%, 27.07%, and 23.60% over the control group and slight differences due to the clays. The production cost of LC3 cementitious material in this study was notably higher than that of OPC, primarily due to the electricity consumption during the calcination process. However, if large-scale production and kiln-based calcination were employed in the future, costs could be significantly reduced.

    第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究方法與流程 第二章 文獻回顧 2.1 卜特蘭水泥 2.1.1 製造 2.1.2 水化機裡 2.1.3 強度發展 2.2 瓷土 2.3 陶土 2.4 石灰石煅燒黏土膠結材(LC3) 2.4.1 製造 2.4.2 水化機理 2.4.3 強度發展 2.4.4 耐久性 第三章 試驗規劃 3.1 試驗材料與設備 3.1.1 試驗材料 3.1.2 試驗設備 3.2 試驗變數及配比設計 3.2.1 試驗變數 3.2.2 配比設計說明 3.2.3 試驗編碼說明 3.3 LC3膠結材製作與拌合 3.4 基本性質試驗 3.4.1 比重 3.4.2 粒徑分析試驗 3.4.3 X-ray Fluorescence (XRF)成分分析 3.5 新拌性質 3.5.1 坍流度試驗 3.5.2 凝結時間試驗 3.6 抗壓強度試驗 3.7 吸水率試驗 3.8 微觀分析 3.8.1 X光繞射分析 3.8.2 掃描式電子顯微鏡 3.8.3 核磁共振(Nuclear Magnetic Resonance,NMR) 第四章 試驗結果與分析 4.1 基本性質 4.1.1 不同煅燒溫度下之瓷土及陶土 4.1.2 粒徑分析 4.2 新拌性質 4.2.1 坍流度 4.2.2 凝結時間 4.3 抗壓強度 4.3.1 煅燒溫度 4.3.2 利用抗壓強度選定煅燒溫度 4.3.3 煅燒黏土加石灰石與熟料之比例 4.3.4 水灰比 4.4 吸水率與抗壓強度之關係 4.5 矽及鋁含量與抗壓強度之關係 4.6 X光繞射分析 4.7 SEM微觀分析 4.8 NMR微觀分析 4.9 LC3膠結材成本分析 4.10 LC3膠結材碳排放量 第五章 結論與建議 5.1 結論 5.1.1 基本性質及新拌性質 5.1.2 抗壓強度 5.1.3 成本分析及碳排放量 5.2 建議 參考文獻

    [1] Antoni, M., Rossen, J., Martirena, F. and Scrivener, K. (2012). "Cement substitution by a combination of metakaolin and limestone." Cement and Concrete Research 42(12): 1579-1589.
    [2] Bentz, D. P., Sant, G. and Weiss, J. (2008). "Early-age properties of cement-based materials. I: Influence of cement fineness." Journal of Materials in Civil Engineering 20(7): 502-508.
    [3] Bullard, J. W., Jennings, H. M., Livingston, R. A., Nonat, A., Scherer, G. W., Schweitzer, J. S., Scrivener, K. L. and Thomas, J. J. (2011). "Mechanisms of cement hydration." Cement and Concrete Research 41(12): 1208-1223.
    [4] Davis, S. J.,Lewis, N. S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I. L., Benson, S. M., Bradley, T., Brouwer, J., Chiang ,Y,M., Clack,C,T, M., Cohen, A., Doig, S., Edmonds, J., Fennell, P., Field, C. B., Hannegan, B., Hodge, B,M., Hoffert, M.I., Ingersoll, E., Jaramillo,P., Lackner,K.S.,Mach, K.J ., Mastrandrea, M., Ogden, J., Peterson, P. F., Sanchez, D. L., Sperling, D., Stagner, J., Trancik, J. E.C.-J. Yang and Caldeira K. (2018). "Net-Zero Emissions Energy Systems." Science 360(6396): eaas9793.
    [5] Dai, Z., Tran, T. T. and Skibsted, J. (2014). "Aluminum Incorporation in the C-S-H Phase of White Portland Cement-Metakaolin Blends Studied by 27Al and 29Si MAS NMR Spectroscopy." Journal of the American Ceramic Society 97(8): 2662-2671.
    [6] Deer, W.A., Howie, R.A., and Zussman, J. (1992). An Introduction to the Rock-forming Minerals (2nd ed.). Harlow: Longman.:228-230
    [7] Dhandapani, Y., Sakthivel, T., Santhanam, M., Gettu, R. and Pillai, R. G. (2018). "Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3)." Cement and Concrete Research 107: 136-151.
    [8] Dixit, A., Du, H. and Pang, S. D. (2021). "Performance of mortar incorporating calcined marine clays with varying kaolinite content." Journal of Cleaner Production 282:124513.
    [9] Du, H. and Pang, S. D. (2020). "High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute." Construction and Building Materials 264:120152.
    [10] Favier, A. and Scrivener, K. (2018). Alkali Silica Reaction and Sulfate Attack: Expansion of Limestone Calcined Clay Cement. Calcined Clays for Sustainable Concrete, October 28 2017,Dordrecht, Springer Netherlands.
    [11] Harrisson, A. M. (2019). Chapter 4 - Constitution and Specification of Portland Cement. Lea's Chemistry of Cement and Concrete (Fifth Edition). Hewlett, P. C. and Liska, M., Butterworth-Heinemann:87-155.
    [12] Hewlett, P. and Liska, M. (2019). Chapter 2- Manufacture of Portland Cemen.Lea's chemistry of Cement and Concrete(Fifth Edition).Oxford,Butterworth-Heinemann. Elsevier.:31-56.
    [13] Hollanders, S., Adriaens, R.,Skibsted, J., Cizer, Ö. and Elsen, J. (2016). "Pozzolanic reactivity of pure calcined clays." Applied Clay Science 132-133: 552-560.
    [14] Kafodya, I., Basuroy, D., Marangu, J. M., Kululanga, G., Addalena R. M. and Novelli ,V. I. (2023) "Mechanical Performance and Physico-Chemical Properties of Limestone Calcined Clay Cement (LC3) in Malawi." Buildings 13 DOI: 10.3390/buildings13030740.
    [15] Krishnan, S., Kanaujia, S. K., Mithia, S. and Bishnoi, S. (2018). "Hydration kinetics and mechanisms of carbonates from stone wastes in ternary blends with calcined clay." Construction and Building Materials 164:265-274.
    [16] Lafhaj, Z., Goueygou, M., Djerbi, A. and Kaczmarek, M. (2006). "Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content." Cement and Concrete Research 36(4): 625-633.
    [17] Lothenbach, B., Scrivener, K. and Hooton, R. D. (2011). "Supplementary cementitious materials." Cement and Concrete Research 41(12):1244-1256.
    [18] Lothenbach, B., Winnefeld, F., Alder, C., Wieland, E. and Lunk, P. (2007). "Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes." Cement and Concrete Research 37(4):483-491.
    [19] Müller, N. and Harnisch, J. (2008). "How to Turn Around the Trend of Cement Related Emissions in the Developing World." WWF-Lafarge Conservation Partnership: Gland, Switzerland.
    [20] Marangu, J. M. (2020). "Physico-chemical properties of Kenyan made calcined Clay-Limestone cement (LC3)." Case Studies in Construction Materials 12: e00333.
    [21] Marchon, D. and Flatt, R. J. (2016). Chapter 8 - Mechanisms of cement hydration. Science and Technology of Concrete Admixtures. Aïtcin, P. C. and Flatt, R. J. Woodhead Publishing:129-145.
    [22] Mindess, S., Young, F. and Darwin, D. (2003). "Concrete (2nd Edition)." Prentice Hall. New Jersey.USA.585.
    [23] Nguyen, Q. D., Kim, T. and Castel, A. (2020). "Mitigation of alkali-silica reaction by limestone calcined clay cement (LC3)." Cement and Concrete Research 137: 106176.
    [24] Rashad, A. M. (2013). "Metakaolin as cementitious material: History, scours, production and composition-A comprehensive overview." Construction and Building Materials 41:303-318.
    [25] Richardson, I. G. (2000). "The nature of the hydration products in hardened cement pastes." Cement and Concrete Composites 22(2):97-113.
    [26] Ruan, Y., Jamil, T., Hu, C., Gautam, B. P. and Yu, J. (2022). "Microstructure and mechanical properties of sustainable cementitious materials with ultra-high substitution level of calcined clay and limestone powder." Construction and Building Materials 314:125416.
    [27] Sajedi, F. and Razak, H. A. (2011). "Effects of curing regimes and cement fineness on the compressive strength of ordinary Portland cement mortars." Construction and Building Materials 25(4):2036-2045
    [28] Schneider, M., Romer, M., Tschudin, M. and Bolio, H. (2011). "Sustainable cement production-present and future." Cement and Concrete Research 41(7): 642-650.
    [29] Scrivener, K., Martirena, F., Bishnoi, S.and Maity, S. (2018). "Calcined clay limestone cements (LC3)." Cement and Concrete Research 114:49-56
    [30] Hi, Z., Lothenbach, B., Geiker, M. R., Kaufmann, J., Leemann, S., Ferreiro, A. and Skibsted, J.(2016). "Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars." Cement and Concrete Research 88:60-72.
    [31] Sánchez Berriel, S., Favier, A., Rosa Domínguez, E., Sánchez Machado, I. R., Heierli, U., Scrivener, K., Martirena Hernández, F. and Habert, G. (2016). "Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba." Journal of Cleaner Production 124:361-369.
    [32] Tan, C., Yu, X. and Guan, Y. (2022). "A technology-driven pathway to net-zero carbon emissions for China's cement industry." Applied Energy 325:119804.
    [33] Ang, J., Wei, S., Li, W., Ma, S., Ji, P. and Shen, X. (2019). "Synergistic effect of metakaolin and limestone on the hydration properties of Portland cement." Construction and Building Materials 223:177-184
    [34] Walkley, B. and Provis, J. L. (2019). "Solid-state nuclear magnetic resonance spectroscopy of cements." Materials Today Advances 1:100007.
    [35] Zunino, F. and Scrivener, K.(2021). "The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties." Cement and Concrete Research 140:106-307.
    [36] CNS 61 R2001 (2021),卜特蘭水泥,中華民國國家標準,經濟部標準檢驗局,台北市。
    [37] CNS 5090 A3089 (2005),土壤比重試驗法,中華民國國家標準,經濟部標準檢驗局,台北市。
    [38] CNS 11272 R3122 (2005),水硬性水泥密度試驗法,中華民國國家標準,經濟部標準檢驗局,台北市。
    [39] CNS 1010 R3032 (2019),水硬性水泥墁料抗壓強度檢驗法(用50 mm或2 in.立方體試體),中華民國國家標準,經濟部標準檢驗局,台北市。
    [40] CNS 488 A3007 (2018),粗粒料密度、相對密度(比重)及吸水率試驗法中華民國國家標準,經濟部標準檢驗局,台北市。
    [41] CNS 3655 R2079 (2005),水硬性水泥可塑稠性水泥漿及墁料之機械拌合法,中華民國國家標準,經濟部標準檢驗局,台北市。
    [42] CNS 786 R3002 (2023),水硬性水泥凝結時間檢驗法(費開式針法),中華民國國家標準,經濟部標準檢驗局,台北市。
    [43] 謝旻霖 (2022),石灰石煅燒黏土複合膠結砂漿之抗壓強度與碳化研究,碩士論文,營建工程系,國立臺灣科技大學。
    [44] 蘇永超 (2010)."淺述陶瓷和瓷器的區別及粘土的性能."陶瓷科學與藝術: 91-93
    [45] 經濟部工業局(2022),推動循環經濟生產低碳水泥,亞泥戮力執行2050淨零碳排目標,https://ghg.tgpf.org.tw/Counseling/Counseling_more?id= ecd60edc57744046bc4274df4df38aba.
    [46] 經濟部能源局(2022),111年度電力排碳係數,https://www.moeaboe.gov.tw /ecw/populace/content/ContentDesc.aspx?menu_id=23142.

    無法下載圖示 全文公開日期 2028/08/28 (校內網路)
    全文公開日期 2028/08/28 (校外網路)
    全文公開日期 2028/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE