簡易檢索 / 詳目顯示

研究生: 劉耀鴻
Yao-Hung Liu
論文名稱: 運用非破壞性與破壞性試驗檢測脆性材料 力學性質
Application of non-destructive and destructive tests in testing for mechanical properties of brittle materials
指導教授: 李安叡
An-Jui Li
口試委員: 陳堯中
汪世輝
陳昭維
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 132
中文關鍵詞: Hoek-Brown準則非破壞性試驗破壞性試驗單壓強度
外文關鍵詞: Hoek-Brown failure criterion, Non-destructive test, Destructive test, Uniaxial compressive strength
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,地下岩石隧道工程以及岩石邊坡工程頻傳災害,因此岩石之強度行為的監測及分析,就成了很重要的一環,由於測試現地岩石試體強度之試驗過程複雜,需事先取樣或於現地施作破壞試驗,此試驗過程繁雜,且需要花費較高金額,而若能事先將破壞性試驗與非破壞性試驗兩者之關係求出並且獲得可信賴之成果,則可應用於現地且大幅降低求取現地岩石強度過程之繁瑣及昂貴程度。因此本研究將利用水泥砂漿與混凝土試體模擬岩心取樣所得之完整岩塊試體,並且也利用現地岩心進行試驗,用以作為岩石非破壞性試驗及破壞試驗所得結果之比較,利用岩石史密斯硬度錘之反彈值與點荷重試驗、單軸抗壓試驗所得之參數,以及利用岩石超音波試驗所得到之參數,並將其結果所得到之非破壞性試驗以及破壞性試驗之關係,再與前人研究所得之現地岩心試體試驗結果數據,進行統計分析比較,並驗證其室內試驗結果之關係是否具有可信度,而試驗結果顯示,各試驗間均具有相關性,且所有試驗參數與單壓試驗參數比較後均具有正相關之關聯性。


    In recent years, the underground rock tunnel and rock slope happened in disasters. Therefore, the monitoring and analysis of rocks’ strength became an important thing. The process of testing rocks' strength is very complicated because it needs to prepare the specimen first or perform the destructive test in situ. In fact, it takes time and money. If we can get the relationship between non-destructive tests and destructive tests, a reasonable result can be probably obtained. This relationship can let us predict the field rock strength and reduce the cost to get the rock strength. Therefore, this study adopts cement mortar, concrete specimens and the intact rock obtained from drilling boreholes to established the relationship between non-destructive tests and destructive tests. They test approaches include rebound value of rock Smith hardness hammer, uniaxial compressive test, point load test, and the ultrasonic test. Comparison between literature and this study, verify the result tests obtained in this study which are meaningful and useful for engineering application in Taiwan.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章、緒論 1 1.1研究動機及目的 1 1.2研究方法 2 第二章、文獻回顧 4 2.1 單軸抗壓強度應用 4 2.2 影響單壓強度的因素 11 2.3 各項試驗與單壓強度間之相關研究 13 2.3.1 點荷重試驗與單壓試驗 13 2.3.2 反彈錘試驗與單壓試驗 15 2.4 各頻率超音波波速與試驗長度及方法間之相關研究 16 2.5 各項試驗指數與超音波波速間之相關研究 18 2.5.1單壓試驗與超音波試驗 18 2.5.2點荷重與超音波試驗 21 2.5.3密度與超音波試驗 22 2.5.4各試驗多元回歸應用 23 第三章、試驗架構 24 3.1 試驗材料及試驗介紹 24 3.1.1 人造材料: 混凝土及水泥砂漿 25 3.1.2 天然材料: 現地岩心 26 3.2 超音波試驗 32 3.2.1 V-Meter Mark III Ultrasonic System儀器 32 3.2.2 A1220 Monolith 儀器 33 3.3 反彈錘試驗 36 3.4 點荷重試驗 38 3.5單軸抗壓試驗 40 第四章、試驗結果與分析 43 4.1各試體於各項試驗之結果分析 43 4.2各項試驗與單壓強度間之結果比較 47 4.2.1 點荷重試驗與單壓試驗 47 4.2.2 反彈錘試驗與單壓試驗 56 4.3 各頻率超音波波速與試驗長度間之結果比較 57 4.4 各項試驗指數與超音波波速間之結果比較 65 4.4.1單壓試驗與超音波試驗 65 4.4.2點荷重試驗與超音波試驗 73 4.4.3密度與超音波試驗 81 4.5壓剪波速與彈性模數之探討 86 4.5.1壓剪波速比較 86 4.5.2壓剪波速與彈性模數比較 91 4.6各試驗多元回歸應用 98 4.7蟾蜍山互層岩心 103 第五章、結論與建議 105 5.1結論 105 5.2建議 106

    1. Altindag, R. 2012. "Correlation between P-wave velocity and some mechanical properties for sedimentary rocks." Review of. Journal of the Southern African Institute of Mining and Metallurgy 112:229-37.
    2. Ameen, Mohammed S., Brian G. D. Smart, J. Mc Somerville, Sally Hammilton, and Nassir A. Naji. 2009. "Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia)." Review of. Marine and Petroleum Geology 26 (4):430-44. doi: https://doi.org/10.1016/j.marpetgeo.2009.01.017.
    3. Ayday, C, and RM Göktan. 1992. Correlations between L and N-type Schmidt hammer rebound values obtained during field testing. Paper presented at the Rock Characterization: ISRM Symposium, Eurock'92, Chester, UK, 14–17 September 1992.
    4. Aydin, A., and A. Basu. 2005. "The Schmidt hammer in rock material characterization." Review of. Engineering Geology 81 (1):1-14. doi: 10.1016/j.enggeo.2005.06.006.
    5. B. Chary, K., L. P. Sarma, K. J. Prasanna Lakshmi, N. A. Vijayakumar, V. Naga Lakshmi, and M. V. M. S. Rao. 2006. Evaluation of Engineering Properties of Rock Using Ultrasonic Pulse Velocity and Uniaxial Compressive Strength.
    6. Basu, A., and A. Aydin. 2004. "A method for normalization of Schmidt hammer rebound values." Review of. International Journal of Rock Mechanics and Mining Sciences 41 (7):1211-4. doi: 10.1016/j.ijrmms.2004.05.001.
    7. Bieniawski, Z. T. 1975. "The point-load test in geotechnical practice." Review of. Engineering Geology 9 (1):1-11. doi: https://doi.org/10.1016/0013-7952(75)90024-1.
    8. Broch, E, and JA Franklin. 1972. The point-load strength test. Paper presented at the International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.
    9. Buyuksagis, I. S., and R. M. Goktan. 2007. "The effect of Schmidt hammer type on uniaxial compressive strength prediction of rock." Review of. International Journal of Rock Mechanics and Mining Sciences 44 (2):299-307. doi: 10.1016/j.ijrmms.2006.07.008.
    10. Chau, KT, and RHC Wong. 1996. Uniaxial compressive strength and point load strength of rocks. Paper presented at the International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.
    11. Chen, Hongey, and Zer-Ye Hu. 2003. "Some factors affecting the uniaxial strength of weak sandstones." Review of. Bulletin of Engineering Geology and the Environment 62 (4):323-32. doi: 10.1007/s10064-003-0207-4.
    12. Christensen, Nikolas I. 2004. "Serpentinites, Peridotites, and Seismology." Review of. International Geology Review 46 (9):795-816. doi: 10.2747/0020-6814.46.9.795.
    13. Çobanoğlu, İbrahim, and Sefer Beran Çelik. 2008. "Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity." Review of. Bulletin of Engineering Geology and the Environment 67 (4):491-8. doi: 10.1007/s10064-008-0158-x.
    14. Diamantis, K., E. Gartzos, and G. Migiros. 2009. "Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations." Review of. Engineering Geology 108 (3):199-207. doi: https://doi.org/10.1016/j.enggeo.2009.07.002.
    15. Entwisle, D. C., P. R. N. Hobbs, L. D. Jones, D. Gunn, and M. G. Raines. 2005. "The Relationships between Effective Porosity, Uniaxial Compressive Strength and Sonic Velocity of Intact Borrowdale Volcanic Group Core Samples from Sellafield." Review of. Geotechnical & Geological Engineering 23 (6):793-809. doi: 10.1007/s10706-004-2143-x.
    16. Ercikdi, Bayram, Kadir Karaman, Ferdi Cihangir, Tekin Yılmaz, Şener Aliyazıcıoğlu, and Ayhan Kesimal. 2016. "Core size effect on the dry and saturated ultrasonic pulse velocity of limestone samples." Review of. Ultrasonics 72:143-9. doi: https://doi.org/10.1016/j.ultras.2016.08.006.
    17. Ersoy, Hakan, Murat Karahan, Ali Erden Babacan, and Muhammet Oğuz Sünnetci. 2019. "A new approach to the effect of sample dimensions and measurement techniques on ultrasonic wave velocity." Review of. Engineering Geology 251:63-70. doi: https://doi.org/10.1016/j.enggeo.2019.02.011.
    18. Fener, M. 2011. "The Effect of Rock Sample Dimension on the P-Wave Velocity." Review of. Journal of Nondestructive Evaluation 30 (2):99-105. doi: 10.1007/s10921-011-0095-7.
    19. Goktan, RM. 1988. "Theoretical and practical analysis of rock rippability." Review of. Ph. D. thesis:108.
    20. Gregory, A. R., G. H. F. Gardner, and L. W. Gardner. 1974. "Formation velocity and density; the diagnostic basics for stratigraphic traps." Review of. Geophysics 39 (6):770-80. doi: 10.1190/1.1440465.
    21. Gunsallus, KL t, and FH Kulhawy. 1984. A comparative evaluation of rock strength measures. Paper presented at the International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.
    22. Inoue, Masayasu, and Michito Ohomi. 1981. "Relation Between Uniaxial Compressive Strength And Elastic Wave Velocity of Soft Rock." In ISRM International Symposium, 5. Tokyo, Japan: International Society for Rock Mechanics and Rock Engineering.
    23. Kahraman, S. 2001. "Evaluation of simple methods for assessing the uniaxial compressive strength of rock." Review of. International Journal of Rock Mechanics and Mining Sciences 38 (7):981-94. doi: https://doi.org/10.1016/S1365-1609(01)00039-9.
    24. Kahraman, Sair, and Tekin Yeken. 2008. "Determination of physical properties of carbonate rocks from P-wave velocity." Review of. Bulletin of Engineering Geology and the Environment 67 (2):277-81. doi: 10.1007/s10064-008-0139-0.
    25. Karaman, Kadir, Ayberk Kaya, and Ayhan Kesimal. 2015. "Effect of the specimen length on ultrasonic P-wave velocity in some volcanic rocks and limestones." Review of. Journal of African Earth Sciences 112:142-9. doi: 10.1016/j.jafrearsci.2015.09.017.
    26. Kassab, Mohamed A., and Andreas Weller. 2015. "Study on P-wave and S-wave velocity in dry and wet sandstones of Tushka region, Egypt." Review of. Egyptian Journal of Petroleum 24 (1):1-11. doi: 10.1016/j.ejpe.2015.02.001.
    27. Kılıç, A., and A. Teymen. 2008. "Determination of mechanical properties of rocks using simple methods." Review of. Bulletin of Engineering Geology and the Environment 67 (2):237. doi: 10.1007/s10064-008-0128-3.
    28. Kurtulus, C., A. Bozkurt, and H. Endes. 2012. "Physical and Mechanical Properties of Serpentinized Ultrabasic Rocks in NW Turkey." Review of. Pure and Applied Geophysics 169 (7):1205-15. doi: 10.1007/s00024-011-0394-z.
    29. Kurtuluş, C., F. Sertçelik, and I. Sertçelik. 2015. "Correlating physico-mechanical properties of intact rocks with P-wave velocity." Review of. Acta Geodaetica et Geophysica 51 (3):571-82. doi: 10.1007/s40328-015-0145-1.
    30. Kurtuluş, Cengiz, T. Serkan Irmak, and Ibrahim Sertçelik. 2010. "Physical and mechanical properties of Gokceada: Imbros (NE Aegean Sea) Island andesites." Review of. Bulletin of Engineering Geology and the Environment 69 (2):321-4. doi: 10.1007/s10064-010-0270-6.
    31. Maxant, J. 1980. "Variation of density with rock type, depth, and formation in the Western Canada basin from density logs." Review of. Geophysics 45 (6):1061-76. doi: 10.1190/1.1441107.
    32. McCann, D. M., M. G. Culshaw, and K. J. Northmore. 1990. "Rock mass assessment from seismic measurements." Review of. Geological Society, London, Engineering Geology Special Publications 6 (1):257. doi: 10.1144/GSL.ENG.1990.006.01.28.
    33. Morgan, Nabil A. 1969. "Physical properties of marine sediments as related to seismic velocities." Review of. Geophysics 34 (4):529-45.
    34. Najibi, Ali Reza, Mohammad Ghafoori, Gholam Reza Lashkaripour, and Mohammad Reza Asef. 2015. "Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran." Review of. Journal of Petroleum Science and Engineering 126:78-82. doi: https://doi.org/10.1016/j.petrol.2014.12.010.
    35. Palomar, I., and G. Barluenga. 2017. "Assessment of lime-cement mortar microstructure and properties by P- and S- ultrasonic waves." Review of. Construction and Building Materials 139:334-41. doi: 10.1016/j.conbuildmat.2017.02.083.
    36. Popovics, Sandor, Joseph L. Rose, and John S. Popovics. 1990. "The behaviour of ultrasonic pulses in concrete." Review of. Cement and Concrete Research 20 (2):259-70. doi: https://doi.org/10.1016/0008-8846(90)90079-D.
    37. Sharma, P. K., and T. N. Singh. 2008. "A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength." Review of. Bulletin of Engineering Geology and the Environment 67 (1):17-22. doi: 10.1007/s10064-007-0109-y.
    38. Sheorey, P. R., D. Barat, M. N. Das, K. P. Mukherjee, and B. Singh. 1984. "Schmidt hammer rebound data for estimation of large scale in situ coal strength." Review of. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 21 (1):39-42. doi: https://doi.org/10.1016/0148-9062(84)90008-1.
    39. Sousa, Luís M. O., Luis M. Suárez del Río, Lope Calleja, Vicente G. Ruiz de Argandoña, and Angel Rodríguez Rey. 2005. "Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites." Review of. Engineering Geology 77 (1):153-68. doi: https://doi.org/10.1016/j.enggeo.2004.10.001.
    40. Tugrul, Atiye, and I. H. Zarif. 1999. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Vol. 51.
    41. Yagiz, Saffet. 2011. "P-wave velocity test for assessment of geotechnical properties of some rock materials." Review of. Bulletin of Materials Science 34 (4):947. doi: 10.1007/s12034-011-0220-3.
    42. Yasar, E., and Y. Erdogan. 2004. "Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks." Review of. International Journal of Rock Mechanics and Mining Sciences 41 (5):871-5. doi: 10.1016/j.ijrmms.2004.01.012.
    43. Yin, Jian-Hua, Robina H. C. Wong, K. T. Chau, David T. W. Lai, and Guang-Si Zhao. 2017. "Point load strength index of granitic irregular lumps: Size correction and correlation with uniaxial compressive strength." Review of. Tunnelling and Underground Space Technology 70:388-99. doi: 10.1016/j.tust.2017.09.011.
    44. Zukui, Li, Zhang Xinxu, Zhao Jinhai, Tang Daixu, Yuan Yongsong, Yan Jing, and Li Yanqing. 2001. "The Experiment Investigation of the Correlation of Acoustic Logging And Rock Mechanical And Engineering Characteristics." In ISRM International Symposium - 2nd Asian Rock Mechanics Symposium, 3. Beijing, China: International Society for Rock Mechanics and Rock Engineering.
    45. 洪如江.1990."初等工程地質學大綱."財團法人地工技術研究發展基金會.
    46. 蔡允翰. 2002. "北橫公路復興至巴陵段岩石單壓強度之 初步預估模式." 國立中央大學.

    無法下載圖示 全文公開日期 2024/07/26 (校內網路)
    全文公開日期 2024/07/26 (校外網路)
    全文公開日期 2024/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE