簡易檢索 / 詳目顯示

研究生: 吳健銘
JIAN-MING WU
論文名稱: 股骨鎖定式骨板機械性質改善
Improved mechanical properties of femoral locking plate
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 趙振綱
Ching-Kong Chao
林晉
Jinn Lin
徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 93
中文關鍵詞: 股骨遠端鎖定式骨板有限元素生物力學測試工作長度
外文關鍵詞: Distal locking plate, FEA, Biomechanical tests, Working length
相關次數: 點閱:258下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

股骨為人類身上最粗的骨頭,當人在運動時其不只受到軸向壓力,也因為其解剖學形狀和周圍肌肉的影響,股骨也受彎曲作用。當股骨骨折時主要會使用鎖定式骨板進行治療,因此在骨折發生初期,患者的生活日常作動皆是以骨板來承載身體的重量,假若骨板設計上的缺陷、又或是外科醫師使用鎖定骨板方式時的方式不當,進而在長時間的走路或過度使用後而導致骨板發生疲勞破壞的情形,則患者將必須再次接受手術,導致痊癒時間的延遲。
本研究主要可以分為兩個部分,第一個是探討骨板設計之好壞,第二部分則是探討骨螺絲工作長度對骨板應力之影響,而這兩部份又分由兩個面向來判斷,分別是ANSYS有限元素模擬以及生物力學實驗測試。本研究以不同之骨折位置來探討骨板設計之優劣,並在不同骨折位置搭配上不同工作長度之螺絲打法來探討其對所對應的應力大小。
透過有限元素分析結果顯示,應力集中在螺絲洞上緣,且多數模型最大應力皆在骨折切口處,且研究發現骨板最弱處位在骨板最薄的位置。在機械實驗方面,較薄的骨板確實受到較大的應力,但位在骨幹中段的骨板應力卻是最大的。影響此結果的因素是由於位在股骨近端與中段之骨板有較長的力臂,故受力最大。在工作長度上,股骨遠端之骨折模型給予較長的工作長度有助於應力之降低,反之則不然,此現象可歸咎於骨板受力狀態的改變。


Femurs are the thickest bones in human bodies. When people are in motion, femurs suffer not only axial load, but also bending load due to its anatomical shape and surrounding muscles. When the femur fractures, the locking plate is mainly used for treatment. Therefore, the daily activities of the patient rely on the plate to carry the weight of the body after the occurrence of the bone fracture. However, if there is a defect in the design of the plate, or any locking method improperly, then the plate will under fatigued and damaged after frequently walking or excessively using. This may result in failure of the treatment and another operation will be needed once again.
There are two parts in this study. The first one is about the weak point of the plate, and the second is to investigate the effect of the different screw working length. The two parts are divided into ANSYS finite element simulation and biomechanics experimental test, respectively. In this study, different fracture positions are used to explore the advantages and disadvantages of plate design, and explore different working lengths with screws corresponding stress.
From the result of finite element analysis, the stress concentration is on the screw-hole edges, and most of the maximum stresses are near the fracture gap. It finds out that the weak point of the plate is the screw-hole edges at the thinnest part of the plate. In mechanical tests, although there is a great stress at the thinnest part of the plate, the maximum stress is at the screw-hole near the middle diaphysis. This is a result of a larger moment arm. In aspect of the working length, longer working length has a good effect at the distal fracture model, but goes worse at a proximal fracture. This comes to a result of a transform of loading.

中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄索引 VI 表目錄索引 IX 第一章 緒論 1 1.1 研究動機與目的. 1 1.2 文獻回顧 3 第二章 研究方法 7 2.1 研究流程圖 7 2.2 A Plus 股骨遠端外側鎖定式骨板與股骨基本幾何參數 7 2.2.1 A Plus 股骨遠端外側鎖定式骨 8 2.3 機械測試 9 2.4 骨板最弱處分析與Working Length現象分析 13 2.5 有限元素分析 14 2.6 統計分析 35 第三章 結果 35 3.1 機械測試結果 35 3.2 有限元素分析結果 38 第四章 討論 42 4.1 最弱處分析 42 4.2 Working Length現象 46 4.3 研究限制 48 第五章 結論與未來展望 49 5.1 結論 49 5.2 未來展望 50 第六章 緒論 正交投影下全人工髖關節之髖臼杯角度測量改善 51 6.1 研究動機與目的 51 6.2 文獻回顧 52 第七章 研究方法 53 7.1 研究流程 53 7.2 標準骨盆之模型建立 54 7.3 全人工髖關節模型設計幾何參數 55 7.4 全人工髖關節模型之髖臼杯角度定義 56 7.5 使用不同角度下之數學模型進行Lewinnek與Murray公式驗證 56 7.6 使用不同角度下之數學模型進行Liaw公式驗證 64 7.7 圓形法進行髖臼杯模型RI RA之校正 69 7.8 應用實際X光片對於RI RA的校正 73 第八章 結果 73 8.1 使用數學模型驗證Lewinnek與Murray公式之結果 73 8.2 使用數學模型驗證Liaw 公式之結果 74 8.3 圓形法公式驗證之結果 75 8.4 應用實際X光片量測RI RA之結果 76 第九章 討論 78 9.1 結果討論 78 9.2 研究限制 78 第十章 結論與未來展望 79 10.1 結論 79 10.2 未來展望 79 參考文獻 80

1. Sommer C, Babst R, Müller M, et al. Locking Compression Plate Loosening and Plate Breakage. Journal of Orthopaedic Trauma. 2004;18(8):571-7.
2. Smith WR, Stahel PF, Ziran BH, et al. Locking plates: tips and tricks. JBJS. 2007;89(10):2297-307.
3. Kanchanomai C, Muanjan P, Phiphobmongkol V. Stiffness and endurance of a locking compression plate fixed on fractured femur. Journal of applied biomechanics. 2010;26(1):10-6.
4. Arnone JC, El-Gizawy AS, Crist BD, et al. Computer-aided engineering approach for parametric investigation of locked plating systems design. Journal of Medical Devices. 2013;7(2):021001.
5. Button G, Wolinsky P, Hak DJJoot. Failure of less invasive stabilization system plates in the distal femur: a report of four cases. 2004;18(8):565-70.
6. Johnson EEJJ. Failure of LCP condylar plate fixation in the distal part of the femur. 2006;88(11):2539-40.
7. Tolat AR, Amis A, Crofton S, et al. Failure of humeral fracture fixation plate in a young patient using the Philos system: case report. 2006;15(6):e44-e7.
8. Yukata K, Doi K, Hattori Y, et al. Early breakage of a titanium volar locking plate for fixation of a distal radius fracture: case report. 2009;34(5):907-9.
9. Ricci W, Tornetta P, Zheng Y, et al., editors. Biomechanical investigation of plate working length on fatigue characteristics of locking plate constructs in human cadaveric distal metaphyseal femoral fracture models. 56th Annual Meeting of the Orthopaedic Research Society (Poster No 1754) New Orleans, LA: March; 2010.
10. Wenger D, Andersson SJI. Low risk of nonunion with lateral locked plating of distal femoral fractures—A retrospective study of 191 consecutive patients. 2019;50(2):448-52.
11. Strauss EJ, Schwarzkopf R, Kummer F, et al. The Current Status of Locked Plating: The Good, the Bad, and the Ugly. Journal of Orthopaedic Trauma. 2008;22(7):479-86.
12. Hak DJ, Toker S, Yi C, et al. The influence of fracture fixation biomechanics on fracture healing. Orthopedics. 2010 Oct;33(10):752-5.
13. Hoffmann MF, Jones CB, Sietsema DL, et al. Outcome of periprosthetic distal femoral fractures following knee arthroplasty. Injury. 2012 Jul;43(7):1084-9.
14. Yeap EJ, Deepak AS. Failure of Distal Femoral Locking Plate: Case Report. 2014.
15. Beltran MJ, Collinge CA, Gardner MJJJotAAoOS. Stress modulation of fracture fixation implants. 2016;24(10):711-9.
16. Shih K-S, Hsu C-C, Hsu T-P, et al. Biomechanical analyses of static and dynamic fixation techniques of retrograde interlocking femoral nailing using nonlinear finite element methods. Computer methods and programs in biomedicine. 2014;113(2):456-64.
17. Papini M, Zdero R, Schemitsch E, et al. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Journal of biomechanical engineering. 2007;129(1):12-9.
18. Lee C-H, Shih K-S, Hsu C-C, et al. Simulation-based particle swarm optimization and mechanical validation of screw position and number for the fixation stability of a femoral locking compression plate. Medical engineering & physics. 2014;36(1):57-64.
19. Gardner MJ, Evans JM, Dunbar RPJJ-JotAAoOS. Failure of fracture plate fixation. 2009;17(10):647-57.
20. McLachlin S, Kreder H, Ng M, et al. Proximal Screw Configuration Alters Peak Plate Strain Without Changing Construct Stiffness in Comminuted Supracondylar Femur Fractures. J Orthop Trauma. 2017 Dec;31(12):e418-e24.
21. MacLeod A, Simpson A, Pankaj PJB, et al. Experimental and numerical investigation into the influence of loading conditions in biomechanical testing of locking plate fracture fixation devices. 2018;7(1):111-20.
22. Stoffel K, Dieter U, Stachowiak G, et al. Biomechanical testing of the LCP--how can stability in locked internal fixators be controlled? Injury. 2003;34:B11-9.
23. Hoffmeier KL, Hofmann GO, Muckley T. Choosing a proper working length
can improve the lifespan of locked plates. A biomechanical study. Clin Biomech (Bristol, Avon). 2011 May;26(4):405-9.
24. Chao P, Conrad BP, Lewis DD, et al. Effect of plate working length on plate stiffness and cyclic fatigue life in a cadaveric femoral fracture gap model stabilized with a 12-hole 2.4 mm locking compression plate. BMC veterinary research. 2013;9.
25. Henderson CE, Lujan TJ, Kuhl LL, et al. 2010 mid-America Orthopaedic Association Physician in Training Award: healing complications are common after locked plating for distal femur fractures. 2011;469(6):1757-65.
26. Moloney GB, Westrick ER, Siska PA, et al. Treatment of periprosthetic femur fractures around a well-fixed hip arthroplasty implant: span the whole bone. 2014;134(1):9-14.
27. Kanakaris NK, Obakponovwe O, Krkovic M, et al. Fixation of periprosthetic or osteoporotic distal femoral fractures with locking plates: a pilot randomised controlled trial. 2019;43(5):1193-204.
28. Huang S-C, Lin C-C, Lin J. Increasing nail-cortical contact to increase fixation stability and decrease implant strain in antegrade locked nailing of distal femoral fractures: a biomechanical study. Journal of Trauma and Acute Care Surgery. 2009;66(2):436-42.
29. Lin J, Lin S-J, Chen P-Q, et al. Stress analysis of the distal locking screws for femoral interlocking nailing. Journal of Orthopaedic Research. 2001 2001/01/01/;19(1):57-63.
30. Murray DJTJob, volume jsB. The definition and measurement of acetabular orientation. 1993;75(2):228-32.
31. Liaw C-K, Yang R-S, Hou S-M, et al. A simple mathematical standardized measurement of acetabulum anteversion after total hip arthroplasty. 2008;9(2):105-19.
32. Lewinnek GE, Lewis J, Tarr R, et al. Dislocations after total hip-replacement arthroplasties. 1978;60(2):217-20.
33. Lee C-H, Hsu C-C, Huang P-YJCib, et al. Biomechanical study of different fixation techniques for the treatment of sacroiliac joint injuries using finite element analyses and biomechanical tests. 2017;87:250-7.

無法下載圖示 全文公開日期 2024/07/23 (校內網路)
全文公開日期 2024/07/23 (校外網路)
全文公開日期 2024/07/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE